

Abstract

This is a publication of the Kentucky Division for Air Quality, part of the Department for Environmental Protection, Energy and Environment Cabinet. The Cabinet does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability and provides, on request, reasonable accommodations including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs, and activities.

CERTIFICATION

By the signatures below, the Kentucky Division for Air Quality certifies that the information contained in this Surveillance Network document for sampling year 2011 is complete and accurate at the time of submittal to EPA Region 4. However, due to circumstances that may arise during the sampling year, some network information may change. A notification of change and a request for approval will be submitted to EPA Region 4 at that time.

PUBLIC NOTIFICATION AND COMMENT PERIOD

In accordance with 40 C.F.R. 58.10(a)(1), the Kentucky Energy and Environment Cabinet shall make the annual monitoring network plan available for public inspection for at least 30 days prior to submission to the U.S. EPA. The annual monitoring network plan details the operation and location of ambient air monitors operated by the Kentucky Division for Air Quality (KYDAQ), Louisville Metro Air Pollution Control District (LMAPCD), and the National Park Service (NPS).

TABLE OF CONTENTS

INTRODUCTION 1
STATION DESCRIPTION FORMAT
KENTUCKY CORE BASED STATISTICAL AREAS AND COUNTIES MAP 11
NETWORK MAP
AIR STATION SUMMARIES 13
NETWORK CHANGES 14
METROPOLITAN STATISTICAL AREAS
Bowling Green, KY 15
Cincinnati-Middletown, OH-KY-IN 18
Clarksville, TN-KY 23
Elizabethtown, KY 26
Evansville, IN-KY 29
Huntington-Ashland, WV-KY-OH 32
Lexington-Fayette, KY 41
Louisville-Jefferson County, KY-IN 46
Owensboro, KY 67
MICROPOLITAN STATISTICAL AREAS
Middlesborough, KY 73
Paducah-Mayfield, KY-IN 75
Richmond-Berea, KY 83
Somerset, KY 85
NOT IN A METROPOLITAN OR MICROPOLITAN STATISTICAL AREA
Grayson, KY88
Calvert City, KY 90
Hazard, KY 98
Pikeville, KY 100
Franklin, KY 102
Russell Springs, KY 104
APPENDIX A -
MEMORANDUM OF AGREEMENT - CINCINNATI, OH-KY-IN MSA 107
APPENDIX B -
MEMORANDUM OF AGREEMENT - EVANSVILLE, IN-KY MSA 113

ACRONYMS

AEM - Automated Equivalent Method
AQI - Air Quality Index
AQS - Air Quality System
ARM - Automated Reference Method

BAM - Beta Attenuation Monitor
CBSA - Core-Based Statistical Area

CSA - Combined Statistical Area
CO - Carbon Monoxide
Cr^{+6} - Hexavalent Chromium

FAM - Federal Alternate Method
FEM - Federal Equivalent Method
FRM - Federal Reference Method
KYDAQ - Kentucky Division for Air Quality
LMAPCD - Louisville Metro Air Pollution Control District

MSA - Metropolitan Statistical Area
NAAQS - National Ambient Air Quality
Standards
NAMS - National Air Monitoring Stations
NATTS - National Air Toxics Trends Stations
$\mathbf{N O}_{\mathbf{2}}$ - Nitrogen Dioxide
NPS - National Park Service
NR-SPM - Non-Regulatory Special Purpose Monitor
\mathbf{O}_{3} - Ozone
PAH - Polycyclic Aromatic Hydrocarbons

TABLE OF CONTENTS (CONTINUED)

```
APPENDIX C -
MEMORANDA OF AGREEMENT - CLARKSVILLE, TN-KY MSA
APPENDIX D 2009 LEAD WAIVER REQUEST121
```

APPENDIX E-
2011 LEAD WAIVER REQUEST 197
APPENDIX F-
KENTUCKY SO 2 PWEI VALUES 257
APPENDIX G -WEST JEFFERSON COUNTY AIRTOXICS MONITORING STATIONS
APPENDIX H - PUBLIC COMMENTS 261
INDEX -KY DAQ AIR MONITORINGSTATIONS BY REGIONAL OFFICE

ACRONYMS (CONTINUED)

$\mathbf{P b}$ - Lead

PM - Particulate Matter

SAMWG - Standing Air Monitoring Working Group

SLAMS - State and Local Air Monitoring Stations
$\mathbf{S O}_{\mathbf{2}}$ - Sulfur Dioxide

SPM - Special Purpose Monitors
TBD - To Be Determined

TEOM - Tapered Elemental Mass Transducer
U.S. EPA - United States Environmental

Protection Agency
VOC - Volatile Organic Compounds

INTRODUCTION

In October 1975, the United States Environmental Protection Agency (U.S.EPA) established a work group to critically review and evaluate current air monitoring activities at that time. This group was named the Standing Air Monitoring Working Group (SAMWG). The review by the SAMWG indicated several areas where deficiencies existed which needed correction. The principal areas needing correction were: an excess of monitoring sites in some areas to assess air quality; existing regulations did not allow for flexibility to conduct special purpose monitoring studies; data reporting was untimely and incomplete, caused by a lack of uniformity in station location and probe siting, sampling methodology, quality assurance practices, and data handling procedures.

In August 1978, recommendations developed by SAMWG, to remedy the deficiencies in the existing monitoring activities, were combined with the new requirements of Section 319 of the Clean Air Act. Section 319 provided for the development of uniform air quality monitoring criteria and methodology; reporting of a uniform air quality index in major urban areas; and the establishment of an air quality monitoring system nationwide which utilized uniform monitoring criteria and provides for monitoring stations in major urban areas that supplement State monitoring. The combination of the recommendations and requirements were included in a proposed revision to the air monitoring regulations.

In May 1979, air monitoring regulations were finalized by the U.S.EPA requiring certain modifications and additions to be included in the State Implementation Plan for air quality surveillance. These regulations require each state to operate a network of monitoring stations designated as State and Local Air Monitoring Stations (SLAMS) that measure ambient concentrations of air pollutants for which standards have been established. The SLAMS designation contains provisions concerning the conformity to specific siting and monitoring criteria not previously required. The regulations also provide for an annual review of the monitoring network to insure objectives are being met and to identify needed modification.

The Kentucky Division for Air Quality (KYDAQ) has operated an air quality monitoring network in the Commonwealth since July 1967. The Louisville Metro Air Pollution Control District (LMAPCD), a local agency, has maintained a sub-network in its area of jurisdiction since January 1956. Since that time, the networks have been expanded in accordance with the U.S.EPA's regulations to consist of a current overall network of 40 stations, operated by KYDAQ, LMAPCD, and the National Park Service. The Commonwealth's SLAMS air monitoring network monitors criteria pollutants for which the National Ambient Air Quality Standards (NAAQS) have been issued. In addition to a SLAMS network, KYDAQ's air monitoring network includes special purpose monitors (SPM) for air toxics, $\mathrm{PM}_{2.5}$ speciation, and meteorological data.

The annual monitoring network description, as provided for in 40 CFR Part 58.10, Annual monitoring network plan and periodic network assessment, must contain the following information for each monitoring station in the network:

1. The Air Quality System (AQS) site identification number for existing stations.
2. The location, including the street address and geographical coordinates, for each monitoring station.
3. The sampling and analysis method used for each measured parameter.
4. The operating schedule for each monitor.
5. Any proposal to remove or move a monitoring station within a period of eighteen months following the plan submittal.
6. The monitoring objective and spatial scale of representativeness for each monitor.
7. The identification of any site that is suitable for comparison against the $\mathrm{PM}_{2.5}$ NAAQS.
8. The Metropolitan Statistical Area (MSA), Core-Based Statistical Area (CBSA), Combined Statistical Area (CSA), or other area represented by the monitor.

The following document constitutes the Kentucky ambient air monitoring network description and is organized into three main parts:
(1) Station Description Format: An outline of the designations, parameters, monitoring methods, and the basis for site selection.
(2) Network Summaries: Presenting the total number of sites and monitors in each region and for the state. Also included is a listing of all proposed changes to the current network.
(3) Air Monitoring Station Description: Each air monitor station is described in detail as per the outline in (1) above.

Modification to the network as determined by an annual review process will be made each year to maintain a current network description document.

STATION DESCRIPTION FORMAT

AQS Site Identification Information

Pertinent, specific siting information for each site and monitor is stored in the U.S. EPA's AQS data system. This information includes the exact location of the site, local and regional population, description of the site location, monitor types, and monitoring objectives. This site and monitor information is routinely updated whenever there is a change in site characteristics or pollutants monitored.

Network Station Description

The network station descriptions contained in this document include the following information:

1. Site Description

Specific information is provided to show the location of the monitoring equipment at the site, if the site is located in a CSA/MSA, the AQS identification number, the GPS coordinates, and that monitors and monitor probes conform to the siting criteria.

2. Date Established

The date when each existing monitoring station was established is shown in the description. For those stations, which are proposed, a date is provided when it is expected for the station to be in operation.

3. Site Approval Status

Each monitoring station in the existing network has been reviewed with the purpose of determining whether it meets all design criteria for inclusion in the SLAMS network. Stations that do not meet the criteria will either be relocated in the immediate area or when possible, resited at the present location.

4. Monitoring Objectives

The monitoring network was designed to provide information to be used as a basis for the following actions:
(a) To determine compliance with ambient air quality standards and to plan measures to attain these standards.
(b) To activate emergency control procedures in the event of an impending air pollution episode.
(c) To observe pollution trends throughout a region including rural areas and report progress made toward meeting ambient air quality standards.
(d) To provide a database for the evaluation of the effects of air quality on population, land use, and transportation planning; to provide a database for the development and evaluation of air dispersion models.

5. Monitoring Stations' Designations

Most stations described in the air quality surveillance network are designated as SLAMS. In addition, some of these stations fulfill other requirements, which must be identified. In this description of the network, designations are also made for Special Purpose Monitors (SPM), Emergency Episode Monitoring sites, and Air Quality Index sites (AQI). The following is the criteria used for each of these designations.

SLAMS: Requirements for air quality surveillance systems provide for the establishment of a network of monitoring stations designated as State and Local Air Monitoring Stations (SLAMS) that measure ambient concentrations of pollutants for which standards have been established. These stations must meet requirements that relate to four major areas: quality assurance, monitoring methodology, sampling interval, and siting of instruments.

EMERGENCY EPISODE MONITORING SITES (EPISODE): Regulations provide for the operation of at least one continuous SLAMS monitor for each major pollutant in designated locations for emergency episode monitoring. These monitors are placed in areas of worst air quality and provide continual surveillance during episode conditions.

AIR QUALITY INDEX (AQI): Certain stations in the SLAMS network provide data for daily index reporting. Index reporting is required for all urban areas with a population exceeding 350,000 . However, KYDAQ is providing this service to the general public from all areas where monitoring and attending staff are available. The AQI is a method of reporting that converts concentration levels of pollution to a simple number scale of $0-500$. Intervals on the AQI scale are related to potential health effects of the daily measured concentrations of the major pollutants. KYDAQ prepares the Index twice daily for release to the public from the pollutant data reported from the Field Offices.

SPM/NR-SPM: Not all monitors and monitoring stations in the air quality surveillance network are included in the SLAMS network. In order to allow the capability of providing monitoring for complaint studies, modeling verification and compliance status, certain monitors are reserved for short-term studies and are designated as either Special Purpose Monitors (SPM) or Non-Regulatory Special Purpose Monitors (NR-SPM). These monitors are not committed to any one location or for any specified time period. They may be located as separate monitoring stations or be included at SLAMS locations. Monitoring data may be reported, provided that the monitors and stations conform to all requirements of the SLAMS network.

6. Monitoring Methods

All sampling and analytical procedures used in the air-monitoring network conform to Federal reference (FRM), alternate (FAM), or equivalent (FEM) methods. In case there is no federal method, procedures are described in the Kentucky Air Quality Monitoring and Quality Assurance Manuals.

(a) Particulate Matter 10 microns in size ($\mathbf{P M}_{10}$)

All PM_{10} samplers operated by the Division for Air Quality are certified as either FRM or FEM samplers and are operated according to the requirements set forth in 40 CFR 50 and 40 CFR 53. Intermittent samplers collect a 24-hour sample every sixth day on 46.2 mm PTFE filters. The
filter is weighed before and after the sample run. The gain in weight in relation to the volume of air sampled is calculated in micrograms per cubic meter $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$. The PTFE filters are to be equilibrated before each weighing for a minimum of 24 hours at a 20-23 degrees C mean temperature and a $30-40 \%$ mean relative humidity.

Continuous PM_{10} samplers provide 24 -hour samples daily for SLAMS reporting. During sampling, ambient air passes through an inlet designed to pass only particles smaller than 10 microns in diameter. After exiting the inlet, the sample stream is sent to a mass transducer. Inside the transducer the sample stream passes through a Teflon-coated glass fiber filter. This filter is weighed every two seconds. The difference between the current filter weight and the initial or installed weight gives the total mass of the collected particulate. The mass concentration is computed by dividing the total mass by the flow rate. Data is transmitted by telemetry for entry into the automated central data acquisition system.

(b) Particulate Matter 2.5 microns in size ($\mathbf{P M}_{2.5}$)

The Division currently operates continuous TEOM monitors, continuous BAM monitors, and manual intermittent samplers for monitoring particulate matter 2.5 microns in size $\left(\mathrm{PM}_{2.5}\right)$. With the exception of continuous TEOM monitors, all $\mathrm{PM}_{2.5}$ samplers operated by the Division for Air Quality are certified as either FRM or FEM samplers.

All FRM and FEM manual samplers are operated per the requirements set forth in 40 CFR 50, Appendix L. Samples are collected on 46.2 mm PTFE filters over a 24 -hour sampling period. Air flow through the filter is to be maintained at 16.7 liters per minute. The flow rate must not vary more than $+/-5 \%$ for five minutes over a 24 -hour sample period at actual ambient temperature and pressure. Samples must be retrieved within 177 hours of the end of the sample run and must be kept cool (4 degrees C or cooler) during transit to meet the thirty-day limit for re-weighing. The PTFE filters are to be equilibrated before each weighing for a minimum of 24 hours at a controlled atmosphere of 20-23 degrees C mean temperature and $30-40 \%$ mean relative humidity. Filters must be used within thirty days of initial weighing. Filters must be reweighed within thirty days of the end of the sample run and must be kept at 4 degrees C or cooler. The gain in weight in relation to the volume of air sampled is calculated in micrograms per cubic meter ($\mathrm{ug} / \mathrm{m}^{3}$).

Continuous BAM FEM monitors measure $\mathrm{PM}_{2.5}$ through beta ray attenuation. During sampling, ambient air passes through an inlet and a very sharp cut cyclone designed to pass only particles smaller than 2.5 microns in diameter. The sample is collected on filter tape as the air passes through the tape. The filter tape is then placed in between a beta source and a scintillation detector causing an attenuation of the beta particle signal. Data is transmitted by telemetry for entry into the automated central data acquisition system. Continuous $\mathrm{PM}_{2.5} \mathrm{BAM}$ monitors provide 24 -hour daily reporting for the AQI.

Continuous $\mathrm{PM}_{2.5}$ TEOM monitors also provide 24 -hour samples daily for AQI reporting. During sampling, ambient air passes through an inlet and very sharp cut cyclone designed to pass only particles smaller than 2.5 microns in diameter. After exiting the inlet, the sample stream is sent to a mass transducer. Inside the transducer the sample stream passes through a Teflon-coated glass fiber filter. This filter is weighed every two seconds. The difference between the current filter weight and the initial or installed weight gives the total mass of the
collected particulate. The mass concentration is computed by dividing the total mass by the flow rate. Data is transmitted by telemetry for entry into the automated central data acquisition system.

(c) $\underline{P M}_{2} .5$ Speciation and Carbon Speciation Sampling and Analysis

In addition to operating $\mathrm{PM}_{2.5}$ samplers that determine only $\mathrm{PM}_{2.5}$ mass values, KYDAQ also operates $\mathrm{PM}_{2.5}$ speciation samplers that collect samples that are analyzed to determine the chemical makeup of $\mathrm{PM}_{2.5}$. Samples are collected on a set of two filters, one comprised of Teflon and a one comprised of nylon, over a 24 -hour sampling period. The filters are composed of either Teflon or nylon in order to collect specific types of toxic pollutants.

A second instrument collects a sample on a quartz filter over a 24 -hour sampling period. The quartz filter is used to collect a speciated carbon sample.

After collection, the samples are shipped in ice chests to an EPA contract laboratory for analysis. At the laboratory, the samples are analyzed using optical and electron microscopy, thermal-optical analysis, ion chromatography, and x-ray fluorescence to determine the presence and level of specific toxic compounds. Sample results are entered in the AQS data system.

(d) Sulfur Dioxide

Instruments used to continuously monitor sulfur dioxide levels in the atmosphere employ the UV fluorescence and UV open path methods. The continuous data output from the instrument is transmitted by telemetry for entry into an automated central data system.

Calibration of these instruments is done dynamically using certified gas mixtures containing a known concentration of sulfur dioxide gas. This gas is then diluted in a specially designed apparatus to give varying known concentrations of sulfur dioxide. These known concentrations are supplied to the instruments, which are adjusted so that instrument output corresponds with the specific concentrations. Calibration curves are prepared for each instrument and each data point is automatically compared to this curve before entry into the data acquisition system.
(e) Carbon Monoxide

Continuous monitoring for carbon monoxide is performed by use of the non-dispersive infrared correlation method. Data is transmitted by telemetry for entry in an automated central data acquisition system.

Calibration of the instrument is performed periodically by using nitrogen or zero air to establish the zero baseline and NIST or NIST traceable gas mixtures of carbon monoxide in air. The span is checked daily using a certified mixture of compressed gas containing approximately 45 parts per million carbon monoxide.

(f) Ozone

Ozone is monitored using the UV photometry methods The continuous data output from the instrument is transmitted by telemetry for entry into an automated central data acquisition system.

Monitors are calibrated routinely using an ozone generator, which is calibrated using the ultra violet photometry reference method. Calibration curves are prepared for each instrument and each data point is automatically compared to this curve before entry into the data acquisition system.

(g) Nitrogen Dioxide

The chemiluminescence method is used in monitoring the nitrogen dioxide level in the ambient air. The continuous data output from the instrument is transmitted by telemetry for entry into an automated central data acquisition system.

Calibration of these instruments is done dynamically using NIST certified gas mixtures of nitric oxide. Through the use of dilution apparatus, varying concentrations are produced and supplied to the monitors, thus producing a specific calibration curve for each instrument. Each data point is automatically compared to this curve before entry into the data acquisition system.

(h) Lead

Lead concentrations are determined from the analysis of suspended particulates collected by high volume particulate samplers. These samplers use a brushless motor and a critical flow orifice in order to achieve a sampling flow rate between 1.10 and 1.70 cubic meters per minute ($\mathrm{m} 3 / \mathrm{min}$) over the course of 24 hours. Samples are collected on 8×10 glass fiber filters. Upon collection, the filters are sent to an EPA certified laboratory for analysis. The sample filters are cut into strips, acid digested according to 40 CFR Part 50, Appendix G, and analyzed by Inductively Coupled Plasma with Mass Spectroscopy Detection (ICP-MS).

$\underline{\text { Air Toxics }}$

Air toxics samples are classified into five categories: metals, volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), hexavalent chromium, and carbonyls.

Metal samples are collected on 46.2 mm PTFE filter over a 24 -hour period similar to the PM_{10} monitoring method. The filter is weighed before and after the sample run. The gain in weight in relation to the volume of air sampled is used to calculate the concentration in micrograms per cubic meter $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$. The PTFE filter is to be equilibrated before each weighing for a minimum of 24 hours at a 20-23 degrees C mean temperature and a $30-40 \%$ mean relative humidity. The filter is then delivered to the Environmental Services Branch laboratory for inductively coupled plasma/mass spectrometer analysis to determine the concentration of metals in $\mathrm{ng} / \mathrm{m}^{3}$.

VOC samples are collected in a passivated vacuum canister. Ambient air is pulled into the canister over a 24 -hour sampling period. The sample is shipped to either the Environmental Services Branch laboratory or an EPA contract laboratory for gas chromatography/mass spectrometer analysis. VOC concentrations determined in the sample are reported in ug $/ \mathrm{m}^{3}$.

PAH samples are collected by a hi-volume air sampler over a 24 -hour period. The sample is collected on a polyurethane foam filter cartridge. After sampling, the filter cartridge is packed on ice and shipped to an EPA contract laboratory for analysis via gas chromatography/mass spectrometry. PAH concentrations are reported in $\mathrm{ng} / \mathrm{m}^{3}$.

Hexavalent chromium samples are collected on ashless cellulose filters. During sampling, ambient air is pulled through the filter over a 24 -hour period. After sampling, the filter is shipped to an EPA contract laboratory for analysis via ion chromatography. Hexavalent chromium concentrations are reported in $\mathrm{ng} / \mathrm{m}^{3}$.

Carbonyl samples are collected on a DPNH cartridge. An ambient air stream flows through the cartridge at a (1) liter per minute flow rate for a 24 -hour sampling period. The cartridge is packed on ice and shipped to the Environmental Service Branch laboratory for high-pressure liquid chromatography analysis. Carbonyl concentrations determined in the sample are reported in $\mathrm{ug} / \mathrm{m}^{3}$.

(j) RadNet

The EPA RadNet fixed air station consists of a high-volume sampler that pulls ambient air through a 4 -inch diameter filter at a rate of 1,000 liters per minute. Filters are collected twice each week. The instrument also consists of two radiation detectors that continuously measure gamma and beta radiation from particulates collected on the air filter. Data is recorded to the monitor's CPU and is sent hourly to the National Air and Radiation Environmental Laboratory (NAREL) for evaluation.

The EPA RadNet network, which has stations in each State, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents. RadNet also documents the status and trends of environmental radioactivity. In general, data generated from RadNet provides the information base for making decisions necessary to ensure the protection of public health. The system helps the EPA determine whether additional sampling or other actions are needed in response to particular releases of radioactivity to the environment. RadNet can also provide supplementary information on population exposure, radiation trends, and other aspects of releases. Data is published by NAREL in a quarterly report entitled Environmental Radiation Data. While the Division operates the monitor, all other aspects, including maintenance and data responsibility, are handled by the EPA. For more information, please visit the EPA's RadNet website: http://www.epa.gov/narel/radnet/.

7. Quality Assurance Status

The Division for Air Quality has an extensive quality assurance program to ensure that all air monitoring data collected is accurate and precise. Staff members audit air monitors on a scheduled basis, including those operated by the Louisville Metro Air Pollution Control District and the National Park Service, to ensure that each instrument is calibrated and operating properly. Data validation is performed monthly by verifying the data reported by each instrument is recorded accurately in the computerized database.

8. Area Representativeness

Each station in the monitoring network must be described in terms of the physical dimensions of the air parcel nearest the monitoring station throughout which actual pollutant concentrations are reasonably similar. Area dimensions or scales of representativeness used in the network description are:
(a) Microscale - defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
(b) Middle scale - defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
(c) Neighborhood scale - defines the concentrations within an extended area of a city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers.
(d) Urban scale - defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
(e) Regional Scale - defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Closely associated with the area around the monitoring station where pollutant concentrations are reasonably similar are the basic monitoring exposures of the station. There are four basic exposures included in this description:
(a) To determine the highest concentrations expected to occur in the area covered by the network.
(b) To determine representative concentrations in areas of high population density.
(c) To determine the impact on ambient pollution levels of significant sources or source categories.
(d) To determine general background concentration levels.

The design intent in siting stations is to correctly match the area dimensions represented by the sample of monitored air with the area dimensions most appropriate for the monitoring objective of the station. The following relationship of the four basic objectives and the area of representativeness are appropriate when siting monitoring stations:

Monitoring Exposures	Siting Area Scale Highest concentration
Population	Neighborhood
Source impact	Neighborhood, Urban
General/background	Micro, Middle, Neighborhood
	Neighborhood, Regional

Data Processing and Reporting

All ambient air quality data are stored in a centralized server located at the $14^{\text {th }}$ floor of the Capital Plaza Tower, the Energy and Environment Cabinet (EEC) headquarters in Frankfort, Kentucky. The server is backed up on tape nightly, weekly, and monthly. The backup tape of the server is stored off site of the EEC headquarters and is cycled through use on a monthly schedule. After each month of data has passed all quality assurance checks, the data is transmitted via telemetry to the U.S. EPA's national data storage system known as AQS. Statistical data summaries are generated from this database and compiled to produce the Ambient Air Quality Annual Report. This report may be accessed at the KYDAQ website: http://air.ky.gov. The report is located under Resources.

LMAPCD Cannons Lane

AIR MONITORING STATIONS SUMMARY

Metropolitan Statistical Area	Number of Sites	$\mathrm{PM}_{2.5}$		PM_{10}	SO_{2}	NO_{2}	NO_{y}	CO	O_{3}	Pb	VOC	$\begin{gathered} \text { Carb- } \\ \text { onyl } \\ \hline \end{gathered}$	PAH	Cr^{+6}	$\mathrm{PM}_{2.5}$ Speciation	Carbon Speciation	$\begin{aligned} & \text { Rad } \\ & \text {-net } \\ & \hline \end{aligned}$	MET
Bowling Green, KY	2	4	Ст	0	1	1	0	1	2	0	0	0	0	0	0	0	0	1
Cincinnati-Middletown, OH-KY-IN	2	2	B	0	1	1	0	0	2	0	0	0	0	0	0	0	0	1
Clarksville, TN-KY	1	1		0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
Elizabethtown, KY	1	3	CB	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Evansville, IN-KY	1	2	T	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
Huntington-Ashland, WV-KY-OH	4	2	T	$2{ }^{\text {c* }}$	2	1	0	0	2	1	1	1	0	0	1	1	0	1
Lexington-Fayette, KY	2	2	T	1	2	1	0	0	2	0	1	1	0	0	1	1	1	1
Louisville-Jefferson County, KY-IN	9	9	CT		3	1	1	2	5	0	0	0	0	0	1	1	1	3
Owensboro, KY	2	2	T	0	1	1	0	0	2	0	0	0	0	0	0	0	0	1
Micropolitan Statistical Area																		
Paducah, KY-IL	4	2	T	1	1	1	0	0	2	0	1	0	0	0	0	0	0	1
Somerset, KY	1	1		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Middlesboro, KY	1	1		0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Richmond-Berea, KY	1	1		0	0	0	0	0	0	$2^{\text {c }}$	0	0	0	0	0	0	0	0
Not in a MSA																		
Carter County	1	1		$2{ }^{\text {c* }}$	0	0	0	0	1	0	$1^{\text {D }}$	$1{ }^{\text {D }}$	1	$2^{\text {c }}$	1	1	0	1
Marshall County	4	0		1	0	0	0	0	0	0	$5^{\text {c }}$	0	0	0	0	0	0	1
Perry County	1	1	T	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Pike County	1	3	ст	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Russell County	1	0		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Simpson County	1	0		0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
TOTALS	40	37		13	13	7	1	3	26	4	9	3	1	2	4	4	2	14

Bowling Green, KY

AQS ID	ADDRESS	PM2.5	PM10	SO2	NO2	CO	O3	Lead	VOC	Carbonyl	Speciation	MET
$\begin{aligned} & \text { 21-061-0501 } \\ & \text { (NPS) } \\ & \hline \end{aligned}$	Alfred Cook Road Mammoth Cave (Edmonson)	X(tI)		X	X	X	X					X
21-227-0009	TBD (Warren County)	X(ctI)					X(sI)					
	TOTAL	4	0	1	1	1	2	0	0	0	0	1

(c)	Collocated Monitor
(I)	Air Quality Index Monitor
(s)	Special Purpose Monitor
(t)	Continuous PM Monitor

[^0]CSA/MSA: Bowling Green, KY MSA
401 KAR 50:020 Air Quality Region: South Central Kentucky Intrastate (105)
Site Name: TBD
AQS Site ID: 21-227-0009
Location: TBD
County: Warren
GPS Coordinates: TBD
Date Established: TBD
Inspection Date: TBD
Inspection By: TBD
Site Approval Status: Siting and monitor design has not been approved by the EPA.

This monitoring site is being established as a replacement for the Oakland (Warren County) air monitoring station (21-2270008). In October 2010, the Oakland site was found to be siting within the doline of a sinkhole and is to be discontinued. The new site will be located within Warren County and will consist of a stationary equipment shelter. The site will be established in accordance with 40 CFR 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives will be to determine compliance with National Ambient Air Quality Standards and to provide levels of ozone and particulate matter for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling		
AEM Ozone	TBD	SPM				
AQI					\quad UV photometry \quad	Continuously
:---						
March 1 - October 31						

Quality Assurance Status:

All Quality Assurance procedures will be implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site will represent population exposure on an urban scale for particulates. This site will also represent maximum concentration on an urban scale for ozone.

Cincinnati-Middletown, OH-KY-IN

(e)	Emergency Episode Monitor
(I)	Air Quality Index Monitor
(s)	Special Purpose
(b)	Continuous PM Monitor

[^1]CSA/MSA: Cincinnati-Middletown-Wilmington, OH-KY-IN CSA/Cincinnati-Middletown, OH-KYIN MSA
401 KAR 50:020 Air Quality Region: Metropolitan Cincinnati (Ohio) Interstate (079)
Site Name: East Bend
AQS Site ID: 21-015-0003
Location: KY 338 and Lower River Road, East Bend, KY 41005
County: Boone
GPS Coordinates: 38.918243, -84.852609 (WGS 84)
Date Established: July 1, 1977
Inspection Date: October 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located at the intersection of KY 338 and Lower River Road in East Bend, Kentucky. The sample inlet is 15 meters from the nearest road. The most recent site inspection was conducted on October 15, 2010. Upon inspection, the sample line and monitor were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D and E.

Monitoring Objective:

The monitoring objective is to determine compliance with National Ambient Air Quality Standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling		
AEM Ozone	3.3	SLAMS				
AQI						UV photometry
:---						
March 1- October 31						

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents background levels on an urban scale for ozone.

CSA/MSA: Cincinnati-Middletown-Wilmington, OH-KY-IN CSA/Cincinnati-Middletown, OH-KYIN MSA
401 KAR 50:020 Air Quality Region: Metropolitan Cincinnati (Ohio) Interstate (079)
Site Name: Northern Kentucky University "NKU"
AQS Site ID: 21-037-3002
Location: 524A John’s Hill Road, Highland Heights, KY 41076
County: Campbell
GPS Coordinates: 39.02181, -84.47445 (WGS 84)
Date Established: August 1, 2007
Inspection Date: October 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on farmland owned by Northern Kentucky University in Highland Heights, Kentucky. The sample inlets are 22 meters from the nearest road, which is a dirt service drive for a radio tower. The most recent site inspection was conducted on October 15, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to provide ozone, particulate, nitrogen dioxide, and sulfur dioxide levels for daily index reporting; and to detect elevated pollutant levels for activation of emergency control procedures for ozone.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Nitrogen Dioxide	3.8	SLAMS	Chemiluminescence	Continuously
AEM Ozone	3.8	SLAMS AQI EPISODE	UV photometry	Continuously March $1-$ October 31
FRM PM $_{2.5}$	4.6	SLAMS	Gravimetric	24-hours every third day
FEM PM 2.5 BAM	4.0	NR-SPM AQI	Beta Attenuation Mass Monitor	Continuously
AEM Sulfur Dioxide	3.9	SLAMS AQI	UV fluorescence	Continuously
Meteorological	1.5	Other	Rain gauge	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure for nitrogen dioxide, ozone, and sulfur dioxide on an urban scale. This site also represents population exposure on a neighborhood scale for particulate matter.

Clarksville, TN-KY

AQS ID	ADDRESS	PM2.5	PM10	SO2	NO2	CO	O3	Lead	VOC	Carbonyl Speciation MET	
$21-047-0006$	10800 Pilot Rock Road	X		$\mathrm{X}(\mathrm{s})$			X				
	Hopkinsville (Christian)										
TOTAL	1	0	1	0	0	1	0	0	0	0	0

(s) Special Purpose
(Rev. 6/20/11)

CSA/MSA: Clarksville, TN- KY MSA
401 KAR 50:020 Air Quality Region: Paducah - Cairo Interstate (072)
Site Name: Hopkinsville
AQS Site ID: 21-047-0006
Location: 10800 Pilot Rock Road, Hopkinsville, KY 42240
County: Christian
GPS Coordinates: 36.91171, -87.323337(WGS 84)
Date Established: January 1, 1999
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site consists of a $\mathrm{PM}_{2.5}$ monitoring platform and an adjacent stationary equipment shelter. The site is located in a field on the property of a private residence, located at 10800 Pilot Rock Road in Hopkinsville, Kentucky. The sample inlets are 108 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D and E.

On June 22, 2010, the EPA promulgated a new final rule regarding SO_{2} monitoring. The new rule requires that SO_{2} monitoring sites be established based upon a Population Weighted Emissions Index (PWEI). On March 3, 2011, the EPA released preliminary PWEI values; these values initially indicated that the Clarksville, TN-KY MSA would required one SO_{2} monitor. On May 31, 2011, the EPA released updated PWEI values; these PWEI values showed that the Clarksville, TN-KY MSA did not require any SO_{2} monitors. The Division will still establish SO_{2} monitoring at the Hopkinsville site. However, the monitor will be designated as special purpose.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to determine levels of interstate regional transport of fine particulate matter and ozone. The monitoring objective will also include determining levels of regional transport of sulfur dioxide.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling		
AEM Ozone	3.4	SLAMS				
AQI					\quad UV photometry \quad	Continuously
:---						
March 1- October 31						

Quality Assurance Status:

All Quality Assurance procedures for $\mathrm{PM}_{2 \cdot 5}$ have been implemented in accordance with 40 CFR 58, Appendix A. Quality Assurance Procedures will be implemented for SO_{2} in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a regional scale for ozone and $\mathrm{PM}_{2.5}$. This site will also represent population exposure on an urban scale for sulfur dioxide.

Elizabethtown, KY

AQS ID	ADDRESS	PM2.5	PM10	SO2	NO2	CO	O3	Lead	Voc	Carbonyl	Speciation	MET
21-093-0006	801 N Miles St, Am Legion Park	X(cb)					X(s)					
	Elizabethtown (Hardin)											
	TOTAL	3	0	0	0	0	1	0	0	0	0	0

(c)	Collocated Monitor
(s)	Special Purpose Monitor
(b)	Continuous PM Monitor

(Rev.5/16/11)

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / Elizabethtown, KY MSA
401 KAR 50:020 Air Quality Region: North Central Kentucky Intrastate (104)
Site Name: Elizabethtown
AQS Site ID: 21-093-0006
Location: American Legion Park, 801 North Miles Street, Elizabethtown, KY 42701
County: Hardin
GPS Coordinates: 37.70558, -85.85245 (WGS 84)
Date Established: February 24, 2000
Inspection Date: September 22, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located near the tennis courts on the grounds of the American Legion Park in Elizabethtown, Kentucky. The sample inlets are 32 meters from the nearest road. The most recent site inspection was conducted on September 22, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide ozone and particulate levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.4	SPM		
AQI	UV photometry	Continuously March $1-$ October 31		
FEM PM 2.5	4.6	SLAMS	Gravimetric	24-hours every third day
- Collocated FEM $_{\text {PM }_{2.5}}$	4.6	SLAMS	Gravimetric	24-hours every sixth day
FEM PM $_{2.5}$ BAM	4.0	NR-SPM	Beta Attenuation Mass Monitor	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for particulates and population exposure on an urban scale for ozone.

Evansville, IN-KY

AQS ID	ADDRESS		PM2.5	PM10	SO2	NO2	CO	O3	Lead	VOC	Carbonyl Speciation MET
$21-101-0014$	Baskett Fire Department	$\mathrm{X}(\mathrm{t})$	$\mathrm{X}(\mathrm{m})$	X			$\mathrm{X}(\mathrm{s})$				
Baskett (Henderson)											
TOTAL	2	1	1	0	0	1	0	0	0	0	

(s) Special Purpose Monitor
(t) Continuous PM Monitor
(m) Metals
(Rev. 5/16/11)

CSA/MSA: Evansville, IN-KY MSA
401 KAR 50:020 Air Quality Region: Evansville-Owensboro-Henderson Interstate (077)
Site Name: Baskett
AQS Site ID: 21-101-0014
Location: Baskett Fire Department, Baskett, KY 42402
County: Henderson
GPS Coordinates: 37.87120, -87.46375 (WGS 84)
Date Established: February 27, 1992
Inspection Date: December 20, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Baskett Fire Department in Baskett, Kentucky. The sample inlets are 6.5 meters from the nearest road. The most recent site inspection was conducted on December 20, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide ozone, particulate, and sulfur dioxide levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.9	SPM		
AQI	UV photometry	Continuously March 1 - October 31		
FEM PM 2.5	4.5	SLAMS	Gravimetric	24-hours every third day
PM $_{2.5}$ TEOM	4.7	SPM	Tapered element oscillating microbalance, gravimetric	Continuously
FRM PM 10	4.7	SLAMS	Gravimetric	24-hours every sixth day
- PM $_{10}$ Metals	SPM	Determined from the PM using sample using EPA method IO 3.4	Same as PM 10	
AEM Sulfur Dioxide	3.5	SLAMS	UV fluorescence	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents maximum concentrations on an urban scale for ozone. This site also represents population exposure on a neighborhood scale for particulates and sulfur dioxide.

Huntington-Ashland, WV-KY-OH

(c)	Collocated Monitor
(e)	Emergency Episode Monitor
(I)	Air Quality Index Monitor
(s)	Special Purpose Monitor
(t)	Continuous PM Monitor
(m)	Metals

CSA/MSA: Huntington-Ashland, WV-KY-OH MSA
401 KAR 50:020 Air Quality Region: Huntington (WV)-Ashland (KY)-Portsmouth-Ironton (OH)
Interstate (103)
Site Name: Ashland - Greenup ($21^{\text {st }}$ and Greenup)
AQS Site ID: 21-019-0002
Location: $12222^{\text {nd }}$ Street, Ashland, KY 41101
County: Boyd
GPS Coordinates: 38.47676, -82.63137 (WGS 84)
Date Established: April 2, 1978
Inspection Date: December 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is located on the west end of the roof of the Ashland Valvoline Oil complex building in Ashland, Kentucky. The building is one story tall. The sample inlets are 20 meters from the nearest road. The most recent site inspection was conducted on December 7, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D and E.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to measure concentrations of a sub-group of air toxics.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM PM 10	6.4	SLAMS	Gravimetric	24-hours every sixth day
- Collocated FRM PM 10	6.4	SLAMS	Gravimetric	24-hours every twelfth day
- Metals PM $_{10}$		SPM	Determined from the PM $_{10}$ sample using EPA method IO 3.4	Same as PM $_{10}$

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents maximum concentrations on a middle scale for particulates. This site also represents population exposure on a neighborhood scale for air toxics.

CSA/MSA: Huntington-Ashland, WV-KY-OH MSA
401 KAR 50:020 Air Quality Region: Huntington (WV)-Ashland (KY)-Portsmouth-Ironton (OH)
Interstate (103)
Site Name: Lockwood
AQS Site ID: 21-019-0016
Location: 18138 Cherrywood, Lockwood Estates, Catlettsburg, KY 41129
County: Boyd
GPS Coordinates: 38.33150, -82.59106 (WGS 84)
Date Established: January 1, 2010
Inspection Date: November 16, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

Calgon Carbon, located in Catlettsburg, Kentucky, was identified as a lead source emitting over 6 tons per year of actual reported emissions in 2007. In accordance with 40 CFR Part 58, Appendix D, a lead source monitoring site was located in the Lockwood Estates off U.S. 23 in Catlettsburg, Kentucky. The location of this source-oriented lead monitor was determined through the use of AERMOD modeling analysis. The model indicated that majority of the source impact would be in West Virginia. However, the model indicated that Lockwood Estates was within the deposition boundary.

The lead monitor is located on a sampling platform and the inlets are 76 meters from the nearest road. The most recent site inspection, on November 16, 2010 showed the sampler and inlet to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D and E.

Monitoring Objective:

The monitoring objective is to determine compliance with National Ambient Air Quality Standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM Lead	2.0	SLAMS	High volume air sampler. Analysis via ICP-MS.	24 -hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents maximum concentrations, from a source, on a middle scale for lead.

Middle Scale

CSA/MSA: Huntington-Ashland, WV-KY-OH MSA
401 KAR 50:020 Air Quality Region: Huntington (WV)-Ashland (KY)-Portsmouth-Ironton (OH) Interstate (103)
Site Name: Ashland Primary (FIVCO)
AQS Site ID: 21-019-0017
Location: FIVCO Health Department, 2924 Holt Street, Ashland, KY 41101
County: Boyd
GPS Coordinates: 38.45934, -82.64041 (WGS 84)
Date Established: January 1, 1999
Inspection Date: December 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the health department building in Ashland, Kentucky. The sample inlets are 70 meters from the nearest road. The most recent site inspection was conducted on December 7, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect elevated pollutant levels for activation of emergency control procedures for nitrogen dioxide, ozone, and sulfur dioxide; and to provide pollutant levels for daily air quality index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Nitrogen Dioxide	4.3	SLAMS EPISODE	Chemiluminescence	Continuously
AEM Sulfur Dioxide	4.3	SLAMS AQI EPISODE	UV fluorescence	Continuously
AEM Ozone	4.3	$\begin{array}{\|l\|} \hline \text { SLAMS } \\ \text { AQI } \\ \text { EPISODE } \end{array}$	UV photometry	Continuously March 1 - October 31
FRM PM 2.5	4.7	SLAMS	Gravimetric	24-hours every third day
$\mathrm{PM}_{2.5}$ Speciation	4.6	SLAMS	Ion chromatography and X-ray fluorescence	24-hours every sixth day
- Carbon Speciation	4.8	SLAMS	Thermal-optical	24-hours every sixth day
$\mathrm{PM}_{2.5}$ TEOM	4.7	$\begin{aligned} & \hline \mathrm{SPM} \\ & \mathrm{AQI} \end{aligned}$	Tapered element oscillating microbalance, gravimetric	Continuously
Volatile Organic Compounds	3.8	SPM	EPA method TO-15	24-hours every sixth day
Carbonyls	4.0	SPM	EPA method TO-11A	24-hours every sixth day

Meteorological	5.9	Other	AQM grade instruments for wind speed, wind direction, humidity, barometric pressure, and temperature	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site also represents population exposure on a neighborhood scale for air toxics, ozone, and sulfur dioxide. This site also represents maximum concentrations on a middle scale for particulates, as well as an urban scale for nitrogen dioxide.

CSA/MSA: Huntington-Ashland, WV-KY-OH MSA
401 KAR 50:020 Air Quality Region: Huntington (WV)-Ashland (KY)-Portsmouth-Ironton (OH)
Interstate (103)
Site Name: Worthington
AQS Site ID: 21-089-0007
Location: Scott Street and Center Avenue, Worthington, KY 41183
County: Greenup
GPS Coordinates: 38.548164, -82.731131 (WGS 84)
Date Established: October 12, 1980
Inspection Date: December 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of a water tower near the intersection of Scott Street and Center Avenue in Worthington, Kentucky. The sample inlets are 18 meters from the nearest road. The most recent site inspection was conducted on December 7, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect elevated pollutant levels for activation of emergency control procedures for ozone and sulfur dioxide; and to provide pollutant levels for daily air quality index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.2	SLAMS AQI	UV photometry	Continuously March $1-$ October 31
AEM Sulfur Dioxide	4.2	SPM	UV fluorescence	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for ozone and sulfur dioxide.

Lexington-Fayette, KY

AQS ID	ADDRESS	PM2.5	PM10	SO2	NO2	CO	O3	Pb	voc	Carbonyl	Speciation	Radnet	MET
21-067-0012	650 Newtown Pike Lexington (Fayette)	$\mathrm{X}(\mathrm{t})$	$\mathrm{X}(\mathrm{m})$	$\mathrm{X}(\mathrm{el})$	$\mathrm{X}(\mathrm{e})$		X(I e)		$\mathrm{X}(\mathrm{s})$	$\mathrm{X}(\mathrm{s})$	$\mathrm{X}(\mathrm{s})$	X	
21-113-0001	KY DOT Garage, US 27 Bypass Nicholasville (Jessamine)			X(s)			X						X
	TOTAL	2	1	2	1	0	2	0	1	1	1	1	1
(e)	Emergency Episode Monitor												
(I)	Air Quality Index Monitor												
(s)	Special Purpose Monitor												
(t)	Continuous PM Monitor												
(m)	Metals												

CSA/MSA: Lexington-Fayette-Frankfort-Richmond, KY CSA / Lexington-Fayette, KY MSA
401 KAR 50:020 Air Quality Region: Bluegrass Intrastate (102)
Site Name: Lexington Primary
AQS Site ID: 21-067-0012
Location: Fayette County Health Department, 650 Newtown Pike, Lexington, KY 40508
County: Fayette
GPS Coordinates: 38.06503, -84.49761 (WGS 84)
Date Established: November 8, 1979
Inspection Date: October 5, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Fayette County health department building in Lexington, Kentucky. The sample inlets are 122 meters from the nearest road. The most recent site inspection was conducted on October 5, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, $\mathrm{C}, \mathrm{D}, \mathrm{E}$ and G .

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect elevated pollutant levels for activation of emergency control procedures for nitrogen dioxide, ozone, particulates, and sulfur dioxide; and to provide pollutant levels for daily air quality index.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
ARM Nitrogen Dioxide	4.1	SLAMS EPISODE	Chemiluminescence	Continuously
AEM Ozone	3.8	SLAMS AQI EPISODE	UV photometry	Continuously
	4.7	SLAMS	Gravimetric	March 1 - October 31

Volatile Organics Compound	3.4	SPM	EPA method TO-15	24-hours every sixth day
Carbonyls	3.4	SPM	EPA method TO-11A	24-hours every sixth day
Radiation	4.0	RadNet	RadNet fixed stationary monitor, manual and automated methods	Continuously \& 2 weekly filters

Quality Assurance Status: All quality assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for particulates, sulfur dioxide and ozone. This site also represents population exposure on an urban scale for nitrogen dioxide and air toxics.

CSA/MSA: Lexington-Fayette-Frankfort-Richmond, KY CSA / Lexington-Fayette, KY MSA
401 KAR 50:020 Air Quality Region: Bluegrass Intrastate (102)
Site Name: Nicholasville
AQS Site ID: 21-113-0001
Location: DOT Garage, US 27 Bypass, Nicholasville, KY 40356
County: Jessamine
GPS Coordinates: 37.89147, -84.58825 (WGS 84)
Date Established: August 1, 1991
Inspection Date: September 22, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Kentucky DOT Garage in Nicholasville, Kentucky. The sample inlets are 110 meters from the nearest road. The most recent site inspection was conducted on September 22, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to provide ozone data upwind of the Lexington area; and to provide pollutant levels for daily air quality index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.9	SLAMS AQI	UV photometry	Continuously March $1-$ October 31
AEM Sulfur Dioxide	3.9	SPM AQI	UV fluorescence	Continuously
Meteorological	5.9	Other	Wind speed, wind direction, temperature, barometric pressure Rain Gauge	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on an urban scale.

Louisville-Jefferson County, KY-IN

AQS ID	ADDRESS	PM2.5	PM10	SO 2	NOx	NOy	CO	O3	Pb	VOC	Carbonyl	Speciation	Radnet	MET
21-029-0006	2nd \& Carpenter Streets							X(sI)						X
	Shepherdsville (Bullitt)													
21-185-0004	DOT Garage, 3995 Morgan Rd							X(sI)						
	Buckner (Oldham)													
21-111-0027	7601 Bardstown Road	X(tsI)						X(I)						
	Louisville (Jefferson)													
21-111-0043	3621 Southern Avenue	X(ctI)	X(ctI)											X
	Louisville (Jefferson)													
21-111-0044	1032 Beecher Avenue	X	X(tI)											
	Louisville (Jefferson)													
21-111-0051	7201 Watson Lane	X(tsI)		X				X(I)						X
	Louisville (Jefferson)													
21-111-0067	2730 Cannons Lane	X(bI)	X(bsI)	X(I)	X(I)	X	X(I)	X(I)	X			X	X	X
	Louisville (Jefferson)													
21-111-1019	1735 Bardstown Road						X(I)							
	Louisville (Jefferson)													
21-111-1041	4201 Algonquin Parkway			X(e)										
	Louisville (Jefferson)													
	TOTAL	9	5	3	1	1	2	5	1	0	0	1	1	4

(c)	Collocated Monitor
(e)	Emergency Episode Monitor
(I)	Air Quality Index Monitor
(s)	Special Purpose Monitor
(t) or (b)	Continuous PM Monitor

(Rev. 4/25/11)

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: North Central Kentucky Intrastate (104)
Site Name: Shepherdsville
AQS Site ID: 21-029-0006
Location: Second and Carpenter Streets, Shepherdsville, KY 40165
County: Bullitt
GPS Coordinates: 37.98629, -85.71192 (WGS 84)
Date Established: January 30, 1992
Inspection Date: September 22, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located in a fenced-in area near the intersection of Second and Carpenter Streets in Shepherdsville, Kentucky. The sample inlets are 56 meters from the nearest road. The most recent site inspection was conducted on September 22, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide ozone levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.0	SPM		
AQI	UV photometry	Continuously		
March 1 - October 31				

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on an urban scale for ozone.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: North Central Kentucky Intrastate (104)
Site Name: Buckner
AQS Site ID: 21-185-0004
Location: DOT Garage, 3995 Morgan Road, Buckner, KY 40010
County: Oldham
GPS Coordinates: 38.40020, -85.44428 (WGS 84)
Date Established: May 1, 1981
Inspection Date: September 22, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Kentucky DOT Highway Garage in Buckner, Kentucky. The sample inlet is 51 meters from the nearest road. The most recent site inspection was conducted on September 22, 2010. Upon inspection, the sample line and monitor were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide ozone levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.8	SPM	UV photometry	Continuously
AQI		March 1- October 31		

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents maximum concentrations on an urban scale.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Bates Elementary
AQS Site ID: 21-111-0027
Location: Bates Elementary, 7601 Bardstown Road, Louisville, KY 40291
County: Jefferson
GPS Coordinates: 38.13784, -85.57648 (WGS 84)
Date Established: January 4, 1973
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Bates Elementary School in Louisville, Kentucky. The sample inlets are 4.0 meters above ground level and 115 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.0	SLAMS		
AQI	UV photometry	Continuously March 1- October 31		
PM $_{2.5}$ TEOM	5.6	Other AQI	Tapered element oscillating microbalance, gravimetric	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on an urban scale for ozone. This site also represents population exposure on a neighborhood scale for fine particulates.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Cannons Lane
AQS Site ID: 21-111-0067
Location: 2730 Cannons Lane, Louisville, KY 40204
County: Jefferson
GPS Coordinates: 38.22883, -85.6544 (WGS 84)
Date Established: January 1, 2009
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: EPA SLAMS approval on December 22, 2008; EPA NCore approval on October 30, 2009.

The station is located on property leased by LMAPCD. The location is in the NE quadrant of Jefferson County and is approximately 9 km from the urban core of Metro Louisville. In December 2010, a solar electric array designed to produce approximately $6,336 \mathrm{kWh}$ per year was installed. The array provides over 50% of the power used by the air monitoring station. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices A, C, D, E and G.

Monitoring Objective:

The NCore Network addresses the following monitoring objectives:

- timely reporting of data to the public through AIRNow, air quality forecasting, and other public reporting mechanisms
- support development of emission strategies through air quality model evaluation and other observational methods
- accountability of emission strategy progress through tracking long-term trends of criteria and non-criteria pollutants and their precursors
- support long-term health assessments that contribute to ongoing reviews of the National Ambient Air Quality Standards (NAAQS)
- compliance through establishing nonattainment/attainment areas by comparison with the NAAQS
- support multiple disciplines of scientific research, including public health, atmospheric, and ecological.

Monitors:

Monitor Type	Inlet Height (meters)	Designations	Analysis Method	Frequency of Sampling	Startup Date
Carbon Monoxide (CO)	4.6	$\begin{aligned} & \text { NCore } \\ & \text { SLAMS } \\ & \text { AQI } \end{aligned}$	Automated Reference Method utilizing trace level non-dispersive infrared analysis.	Continuously	06/01/2011
Nitrogen Oxide $\left(\mathrm{NO}_{x}\right)$	4.6	NCore SLAMS AQI	Automated Reference Method utilizing chemiluminescence analysis.	Continuously	01/01/2010
Total Reactive Nitrogen (NO/ NO_{y})	8.8	NCore	Automated method utilizing trace level chemiluminescence analysis.	Continuously	01/01/2011
Ozone (O_{3})	4.6	NCore SLAMS AQI	Automated Equivalent Method utilizing UV photometry analysis.	Continuously	01/01/2010
Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$	4.6	NCore SLAMS AQI	Automated Equivalent Method utilizing trace level UV fluorescence analysis.	Continuously	06/01/2010
$\begin{aligned} & \mathrm{PM}_{2.5} \\ & \mathrm{BAM} \end{aligned}$	4.6	NCore NR-SPM AQI	Automated Equivalent Method utilizing Beta Attenuation.	Continuously	01/24/2011
$\begin{aligned} & \hline \mathrm{PM}_{10} \\ & \mathrm{BAM} \\ & \\ & -\mathrm{PM}_{\text {Coarse }} \\ & \left(\mathrm{PM}_{10}-\mathrm{PM}_{2.5}\right) \\ & \mathrm{BAM} \end{aligned}$	4.6	NCore NR-SPM AQI	Automated Equivalent Method utilizing Beta Attenuation. Differential Automated Equivalent Method utilizing Beta Attenuation.	Continuously Continuously	$\begin{aligned} & \hline 01 / 24 / 2011 \\ & 01 / 24 / 2011 \end{aligned}$
$\mathrm{PM}_{2.5}$ Speciation	2.2	NCore SLAMS	Multi-Species manual collection method utilizing thermal optical ion chromatography, gravimetric, and X-ray fluorescence. A second $\mathrm{PM}_{2.5}$ speciation sampler provides $1 / 3$ day sampling coverage for weekends and holidays.	1/6 days 1/3 days	$\begin{aligned} & \hline 01 / 01 / 2009 \\ & 01 / 01 / 2011 \end{aligned}$
- $\mathrm{PM}_{2.5}$ Carbon Speciation	2.4	NCore SLAMS	Multi-species manual collection method utilizing thermal optical and gravimetric analyses. A second carbon speciation sampler provides $1 / 3$ day sampling coverage for weekends and holidays.	1/6 days 1/3 days	$\begin{aligned} & \hline 01 / 01 / 2009 \\ & 01 / 01 / 2011 \end{aligned}$
FRM PM ${ }_{2.5}$	2.4	NCore SLAMS	Manual Reference Method utilizing differential gravimetric analysis	1/3 days	01/01/2009
$\mathrm{PM}_{10 \mathrm{c}}$ Filter - Lead	2.4	NCore SLAMS	Manual Reference Method PM $_{10 \mathrm{c}}$ utilizing differential gravimetric analysis. Every other $\mathrm{PM}_{10 \mathrm{c}}$ Manual Reference Method filter analyzed via X-ray fluorescence.	1/3 days 1/6 days	$01 / 01 / 2009$ $12 / 29 / 2011$

Monitor Type	Inlet Height (meters)	Designations	Analysis Method	Frequency of Sampling	Startup Date
Meteoro- logical -Solar Radiation	9.3	NCore	Air Quality Measurements approved instrumentation for wind speed, wind direction, humidity, and temperature -Rain Gauge	1.8	NCore

Area Representativeness:

The air monitoring equipment at the Cannon's Lane NCore station is specifically located at the urban and neighborhood scales. These scales are generally the most representative of the expected population exposures that occur throughout metropolitan areas.

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A. The District's current Quality Assurance Project Plan covers trace-level $\mathrm{O}_{3}, \mathrm{NO}_{\mathrm{x}}, \mathrm{SO}_{2}$, and CO, as well as $\mathrm{PM}_{2.5}$ speciation, lead, and meteorological measurements. Standard operating procedures for tracelevel CO and SO_{2} monitors have been developed. Additional standard operating procedures manuals will be adopted or developed for new instrumentation.

Pollutant	Spatial Scale	Comments
Ozone	Neighborhood and Urban Scale	10 km radius
$\mathrm{NO}_{\mathrm{x}} / \mathrm{NO}_{\mathrm{y}}$	Neighborhood and Urban Scale	10 km radius
Carbon Monoxide	Neighborhood Scale	There is no urban scale for CO
SO_{2}	Neighborhood Scale	There is no urban scale for SO_{2}
Particulates	Urban	
Radiation	Urban	
VOCs	Neighborhood	

Neighborhood and Urban Scales (10 km): Nitrogen Oxides and Ozone

Urban Scale (50 km): Particulates and Radiation

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Southwick Community Center
AQS Site ID: 21-111-0043
Location: Southwick Community Center, 3621 Southern Avenue, Louisville, KY 40211
County: Jefferson
GPS Coordinates: 38.23319, -85.81566 (WGS 84)
Date Established: July 1, 1983
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is located on the roof of the Southwick Community Center in Louisville, Kentucky. The sample inlets are 6 meters above ground level and 45 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
PM $_{10}$ TEOM	5.9	AQI SLAMS	Tapered element oscillating microbalance, gravimetric	Continuously
- Collocated PM $_{10}$ TEOM	5.9	AQI SLAMS	Tapered element oscillating microbalance, gravimetric	Continuously
FRM PM ${ }_{2.5}$	6.0	SLAMS	Gravimetric	24-hours everyday
- Collocated FRM $^{\text {PM }_{2.5}}$	6.0	Other	Gravimetric	24-hours every sixth day
PM $_{2.5}$ TEOM	6.0	Other		
AQI	Tapered element oscillating microbalance, gravimetric	AQM grade instruments for wind speed, wind direction, humidity, barometric pressure, and temperature AQM grade instrument for precipitation.	Continuously	
Meteorological	11.4	Other	Other	AQnuously
-Rain Gauge	7.8	Consly		

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for particulates. This site also represents population exposure, highest concentration for SLAMS speciation particulates.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Wyandotte Park
AQS Site ID: 21-111-0044
Location: Wyandotte Park, 1032 Beecher Avenue, Louisville, KY 40215
County: Jefferson
GPS Coordinates: 38.19113, -85.77935 (WGS 84)
Date Established: September 1, 1983
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is located on the roof of the recreation building at Wyandotte Park in Louisville, Kentucky. The sample inlets are 5 meters above ground level and 54 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM PM 2.5	5.0	SLAMS	Gravimetric	24-hours everyday
PM $_{10}$ TEOM	4.8	AQI	Tapered element oscillating microbalance, gravimetric	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Watson Lane
AQS Site ID: 21-111-0051
Location: Watson Lane School, 7201 Watson Lane, Louisville, KY 40272
County: Jefferson
GPS Coordinates: 38.06091, -85.89804 (WGS 84)
Date Established: July 16, 1992
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Watson Lane Elementary School in Louisville, Kentucky. The sample inlets are 4 meters above ground level and 34 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.3	SLAMS AQI	UV photometry	Continuously March 1 - October 31
FRM PM $_{2.5}$	4.8	SLAMS	Gravimetric	24-hours every sixth day
PM $_{2.5}$ TEOM	4.6	Other AQI	Tapered element oscillating microbal- ance, gravimetric	Continuously
AEM Sulfur Dioxide	4.3	SLAMS	UV fluorescence	Continuously
Meteorological	6.0	Other	AQM grade instruments for wind speed and wind direction. Not reported to AQS.	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Fire Station 20
AQS Site ID: 21-111-1019
Location: Fire Station 20, 1735 Bardstown Road, Louisville, KY 40205
County: Jefferson
GPS Coordinates: 38.2290, -85.7018 (WGS 84)
Date Established: January 1, 1973
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site is located at Fire Station Number 20 on Bardstown Road in Louisville, Kentucky. The sample inlet is 3.5 meters above ground level and 5 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
ARM Carbon Monoxide	3.5	SLAMS AQI	Non-dispersive infrared	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents maximum concentrations on a micro scale.

CSA/MSA: Louisville-Jefferson County-Elizabethtown-Scottsburg, KY-IN CSA / LouisvilleJefferson, KY-IN MSA
401 KAR 50:020 Air Quality Region: Louisville Interstate (078)
Site Name: Firearms Training
AQS Site ID: 21-111-1041
Location: Firearms Training, 4201 Algonquin Parkway, Louisville, KY 40211
County: Jefferson
GPS Coordinates: 38.23158, -85.82675 (WGS 84)
Date Established: April 13, 1978
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Firearms Training Center in Louisville, Kentucky. The sample inlet is 4.5 meters above ground level and 52 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. The air monitoring site was found to be in accordance with 40 CFR Part 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to detect episode levels for the activation of emergency control procedures.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Sulfur Dioxide	4.5	SLAMS EPISODE	UV fluorescence	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale.

Owensboro, KY

AQS ID	ADDRESS	PM2.5 PM10	SO2	NO2	CO	O3	Lead	VOC	Carbonyl Speciation MET
$21-059-0005$	716 Pleasant Valley Road Owensboro (Daviess)	$\mathrm{X}(\mathrm{tIe})$	$\mathrm{X}(\mathrm{eI})$	$\mathrm{X}(\mathrm{e})$		$\mathrm{X}(\mathrm{eI})$			
$21-091-0012$	Lewisport Elementary School Lewisport (Hancock)						X		

(e) Emergency Episode Monitor
(I) Air Quality Index Monitor
(t)

Continuous PM Monitor
(Rev.5/24/11)

CSA/MSA: Owensboro, KY MSA
401 KAR 50:020 Air Quality Region: Evansville-Owensboro-Henderson Interstate (077)
Site Name: Owensboro Primary
AQS Site ID: 21-059-0005
Location: 716 Pleasant Valley Road, Owensboro, KY 42303
County: Daviess
GPS Coordinates: 37.780833, -87.075556 (WGS 84)
Date Established: December 1, 1970
Inspection Date: December 10, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds behind the Wyndall's Shopping Center in Owensboro, Kentucky. The sample inlets are 48 meters from the nearest road. The most recent site inspection was conducted on December 10, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect emergency pollution levels of criteria pollutants for activation of emergency control procedures; and to provide levels of pollutants for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Nitrogen Dioxide	3.5	SLAMS EPISODE	Chemiluminescence	Continuously
AEM Ozone	3.5	SLAMS EPISODE AQI	UV photometry	Continuously
March 1 - October 31				

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for particulates, ozone, and sulfur dioxide. This site also represents population exposure on an urban scale for nitrogen dioxide.

CSA/MSA: Owensboro, KY MSA
401 KAR 50:020 Air Quality Region: Evansville-Owensboro-Henderson Interstate (077)
Site Name: Lewisport
AQS Site ID: 21-091-0012
Location: Second and Caroline Streets, Lewisport Elementary School, Lewisport, KY 42351
County: Hancock
GPS Coordinates: 37.93829, -86.89719 (WGS 84)
Date Established: September 5, 1980
Inspection Date: December 10, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Lewisport Elementary School in Lewisport, Kentucky. The sample inlet is 57 meters from the nearest road. The most recent site inspection was conducted on December 10, 2010. Upon inspection, the sample line and monitor were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide levels of ozone for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.9	SLAMS		
		AQI	UV photometry	Continuously
March 1- October 31				

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents maximum concentration on an urban scale.

Micropolitan Statistical Areas

AQS ID	ADDRESS	PM2.5	PM10	SO2	NO2	CO	03	Lead	VOC	Carbonyl Speciation	MET
21-013-0002	Airport, 34th \& Dorchester	X(s)					X(s)				X
	Middlesboro (Bell)										
21-139-0003	DOT Garage, 811 Hwy 60 East						X				
	Smithland (Livingston)										
21-139-0004	763 Bloodworth Road								X		X
	Livingston County										
21-145-1004	Paducah Middle School, 342 Lone Oak Rd	X	X								
	Paducah (McCracken)										
21-145-1024	JPRECC, 2901 Powell Street	X(tIe)		X(eI)	X(e)		X(eI)				
	Paducah (McCracken)										
21-151-0003	Mayfield Elementary, Bond St.	X						X(c)			
	Richmond (Madison)										
21-199-0003	Somerset Gas Co., Clifty Street	X(s)					X(s)				
	TOTAL	5	1	1	1	0	4	2	1	0 0	2

(c) Collocated Monitor
(e) Emergency Episode Monitor
(I) Air Quality Index Monitor
(t) Continuous PM Monitor
(s) Special Purpose Monitor

CSA/MSA: Middlesborough, KY Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Appalachian Intrastate (101)
Site Name: Middlesboro
AQS Site ID: 21-013-0002
Location: Middlesboro Airport, Middlesboro, KY 40965
County: Bell
GPS Coordinates: 36.60843, -83.73694 (WGS 84)
Date Established: February 14, 1992
Inspection Date: December 15, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Middlesboro Airport in Middlesboro, Kentucky. The sample inlets are 92 meters from the nearest road. The most recent site inspection was conducted on December 15, 2010. Upon inspection the sample lines and monitors were found to be in good condition. Even though this site is for special purpose monitoring, the site meets the requirements of 40 CFR 58, Appendices C, D, E and G .

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to provide pollutant levels for daily index reporting; and to provide information on the transport of ozone into the region.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.1	SPM AQI	UV photometry	Continuously
March 1- October 31				

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents population exposure on a neighborhood scale for particulates. This site also represents transport on a regional scale for ozone.

CSA/MSA: Paducah-Mayfield, KY-IL CSA / Paducah, KY-IL Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Paducah-Cairo Interstate (072)
Site Name: Smithland
AQS Site ID: 21-139-0003
Location: KY DOT Garage, 811 HWY 60 East, Smithland, KY 42081
County: Livingston
GPS Coordinates: 37.155392, -88.394024 (WGS 84)
Date Established: April 1, 1988
Inspection Date: July 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the KY DOT Highway Garage in Smithland, Kentucky. The sample inlets are 139 meters from the nearest road. The most recent site inspection was conducted on July 7, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G .

Monitoring Objective:

The monitoring objective is to determine compliance with National Ambient Air Quality Standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.3	SLAMS AQI	UV photometry	Continuously March 1 - October 31

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents maximum concentration on an urban scale.

CSA/MSA: Paducah-Mayfield, KY-IL CSA / Paducah, KY-IL Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Paducah-Cairo Interstate (072)
Site Name: Bloodworth
AQS Site ID: 21-139-0004
Location: 763 Bloodworth Road, Smithland, KY 42081
County: Livingston
GPS Coordinates: 37.07151, -88.33389 (WGS 84)
Date Established: September 15, 1986
Inspection Date: July 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located at the residence of 763 Bloodworth Road in Livingston County, Kentucky. The sample inlets are 8 meters from the nearest road. The most recent site inspection was conducted on July 7, 2010. Upon inspection, the sample lines and samplers were found to be in good condition.

Monitoring Objective:

The monitoring objectives are to determine if air toxics are present in the ambient air and to quantify them.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
Volatile Organic Compounds	4.6	SPM	EPA method TO-15	24-hours every sixth day
Meteorological	7.5	Other	AQM grade instruments for wind speed, wind direction, humidity, barometric pressure and temperature	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents source impact on a neighborhood scale.

CSA/MSA: Paducah-Mayfield, KY-IL CSA / Paducah, KY-IL Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Paducah-Cairo Interstate (072)
Site Name: Paducah Middle School
AQS Site ID: 21-145-1004
Location: Paducah Middle School, 342 Lone Oak, Paducah, KY 42001
County: McCracken
GPS Coordinates: 37.06636, -88.63774 (WGS 84)
Date Established: July 1, 1969
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is located on the roof of the Paducah Middle School in Paducah, Kentucky. The sample inlets are 60 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D and E.

Monitoring Objective:

The monitoring objective is to determine compliance with National Ambient Air Quality standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FEM PM $_{2.5}$	10.1	SLAMS	Gravimetric	24-hours every third day
FRM PM $_{10}$	9.9	SLAMS	Gravimetric	24-hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale.

CSA/MSA: Paducah-Mayfield, KY-IL CSA / Paducah, KY-IL Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Paducah-Cairo Interstate (072)
Site Name: Jackson Purchase Paducah Primary
AQS Site ID: 21-145-1024
Location: Jackson Purchase RECC, 2901 Powell Street, Paducah, KY 42003
County: McCracken
GPS Coordinates: 37.05822, -88.57251 (WGS 84)
Date Established: August 15, 1980
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Jackson Purchase RECC in Paducah, Kentucky. The sample inlets are 9 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect elevated pollutant levels for activation of emergency control procedures for nitrogen dioxide, ozone, and sulfur dioxide; and to provide pollutant levels for daily air quality index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Nitrogen Dioxide	3.7	SLAMS EPISODE	Chemiluminescence	Continuously
AEM Ozone	3.7	SLAMS AQI EPISODE	UV photometry	Continuously March 1 - October 31
PM $_{2.5}$ TEOM	4.8	SPM AQI	Tapered element oscillating microbalance, gravimetric	Continuously
AEM Sulfur Dioxide	3.7	SLAMS AQI EPISODE	UV fluorescence	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for ozone, particulates, and sulfur dioxide. This site also represents population exposure on an urban scale for nitrogen dioxide.

CSA/MSA: Lexington-Fayette-Frankfort-Richmond, KY CSA / Richmond-Berea, KY Micropolitan Statistical Area
401 KAR 50:020 Air Quality Region: Bluegrass Intrastate (102)
Site Name: Richmond
AQS Site ID: 21-151-0003
Location: Mayfield School, Bond Street, Richmond, KY 40475
County: Madison
GPS Coordinates: 37.73846, -84.28484 (WGS 84)
Date Established: January 1, 1999
Inspection Date: October 5, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and $\mathrm{PM}_{2.5}$ monitors meet all design criteria for the monitoring network. Siting criteria for the lead samplers has not been approved by the EPA.

The monitoring site is located on the roof of the Mayfield Elementary School in Richmond, Kentucky. The sample inlets are 65 meters from the nearest road. The most recent site inspection was conducted on October 5, 2010. Upon inspection, the sample inlet and monitor were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D and E.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM PM 2.5	5.5	SLAMS	Gravimetric	24-hours every third day
FRM Lead	4.5	SLAMS	High volume air sampler. Analysis via ICP-MS.	24-hours every sixth day
- Collocated FRM Lead	4.5	SLAMS	High volume air sampler. Analysis via ICP-MS.	24-hours every twelfth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale for particulates. This site also represents source impact on a neighborhood scale for lead.

CSA/MSA: Somerset, KY Micropolitan Statistical Area
401 KAR 50:020 Air Quality Control Region: South Central Kentucky Intrastate (105)
Site Name: Somerset
AQS Site ID: 21-199-0003
Location: Somerset Gas Company, Clifty Street, Somerset, KY 42501
County: Pulaski
GPS Coordinates: 37.09798, -84.61152 (WGS 84)
Date Established: February 14, 1992
Inspection Date: November 30, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Somerset Gas Company Warehouse on Clifty Street in Somerset, KY. The sample inlets are 10 meters from the nearest road. The most recent site inspection was conducted on November 30, 2010. Upon inspection the sample line and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, and E .

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide levels of ozone for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.4	SPM	UV photometry	Continuously March 1 - October 31
FRM AM $_{2.5}$	4.6	SPM	Gravimetric	24-hours every third day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents population exposure on an urban scale for ozone. This site also represents population exposure on a neighborhood scale for particulates.

Not in a Metropolitan or Micropolitan Statistical Area

AQS ID	ADDRESS	PM2.5	PM10	SO 2	NO2	CO	O3	Lead	VOC	Carbonyl	Speciation	MET
21-043-0500	Camp Webb, Grayson Lake Grayson (Carter)	X	X(cm)				X(s)		X(d)	X(d)	X	X
21-157-0014	TVA Substation Calvert City (Marshall)								X(c)			
21-157-0016	Atmos Energy Calvert City (Marshall)								X			
21-157-0018	Calvert City Elementary Calvert City (Marshall)		X(sm)						X			
21-157-0019	4237 Gilbertsville Hwy Calvert City (Marshall)								X			
21-193-0003	Perry County Horse Park Hazard (Perry)	X(t)					X(s)					X
21-195-0002	101 N. Mayo Trail, DOT Office Pikeville (Pike)	X (ct)					X(s)					
21-213-0004	KY DOT Garage, KY 1008 Franklin (Simpson)						X(s)					X
21-207-0001	Salem Elementary Russell Springs (Russell)							X				
	TOTAL	5	3	0	0	0	4	1	7	2	1	3

(c) Collocated Monitors
(d) Duplicate Monitor
(s) Special Purpose Monitor
(t) Continuous PM Monitor
(m) Metals

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Region: Huntington (WV)-Ashland (KY)-Portsmouth-Ironton (OH)
Interstate (103)
Site Name: Grayson Lake
AQS Site ID: 21-043-0500
Location: Camp Webb at Grayson Lake Grayson Lake, KY 41143
County: Carter
GPS Coordinates: 38.23887, -82.98810 (WGS 84)
Date Established: May 13, 1981
Inspection Date: December 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter in a fenced area located in a remote section of Camp Webb in Grayson, Kentucky. The nearest road is a service road to the site and is 98 meters from the site. The most recent site inspection was conducted on December 7, 2010. Upon inspection, the sample lines and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices A, C, D, and E.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to determine background levels of $\mathrm{PM}_{2.5}$ and PM_{10}; to provide ozone data upwind of the Ashland area; and to measure rural concentrations of a sub-group of air toxics for use in national assessment.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.0	$\begin{aligned} & \hline \mathrm{SPM} \\ & \mathrm{AQI} \\ & \hline \end{aligned}$	UV photometry	Continuously March 1 - October 31
FEM $\mathrm{PM}_{2.5}$	3.2	SLAMS	Gravimetric	24-hours every third day
$\mathrm{PM}_{2.5}$ Speciation	4.5	SLAMS	Ion chromatography and X-ray fluorescence	24-hours every sixth day
- Carbon Speciation	4.0	SLAMS	Thermal-optical	24-hours every sixth day
FRM PM ${ }_{10}$	3.2	SLAMS	Gravimetric	24-hours every sixth day
- Collocated PM_{10}	3.2	SLAMS	Gravimetric	24-hours every twelfth day
- Metals PM_{10}		NATTS	Determined from the PM_{10} samples using EPA method IO 3.5	Same as PM_{10}

Volatile Organic Compounds	4.2	NATTS	EPA method TO-15.	24-hours every sixth day
- Duplicate Volatile Organic Compounds		NATTS	EPA method TO-15. Collected via same sampling system as primary VOCs.	24-hours. 6 samples per year.
Polycyclic Aromatic Hydrocarbons	1.7	NATTS	EPA method TO-13A	24-hours every sixth day
Carbonyls	3.9	NATTS	EPA method TO-11A	24-hours every sixth day
- Duplicate Carbonyls	3.4	NATTS	NATTS SOP for the Determination of Hexavalent Chromium in Ambient Air Analyzed by Ion Chromatography (IC)	EPA method TO-11A. Collected via carbonyls.
Chrome $\mathrm{VI}^{24-h o u r s ~ e v e r y ~ t w e l f t h ~ d a y ~}$				
- Collocated Chrome $\mathrm{VI}_{\mathrm{VI}}$	3.3	NATTS	SOP for the Determination of Hexavalent Chromium in Ambient Air Analyzed by Ion Chromatography (IC)	24-hours every twelfth day
Meteorological	7.5	Other	AQM grade instruments for wind speed, wind direction, relative humidity, and temperature	Continuously
Solar Radiation Rain Gauge				

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents background levels on an urban scale for particulates and mercury. This site also represents upwind/background levels on an urban scale for ozone and population exposure on an urban scale for wet deposition.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Paducah - Cairo Interstate (072)
Site Name: TVA Calvert City
AQS Site ID: 21-157-0014
Location: Ballpark Road, Calvert City, KY 42029
County: Marshall
GPS Coordinates: 37.04520, -88.33087 (WGS 84)
Date Established: January 1, 2005
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is an air toxics monitor location off Ballpark Road in Calvert City, Kentucky. The sample inlets are 2 meters above ground level. The inlets are 230 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition.

Monitoring Objective:

The monitoring objectives are to detect and quantify air toxic pollutants.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
Volatile Organic Compounds	2.1	SPM	EPA method TO-15	24-hours every sixth day
- Collocated Volatile Organic Compounds	2.0	SPM	EPA method TO-15	24-hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents source oriented exposure on a middle scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Paducah - Cairo Interstate (072)
Site Name: Atmos Calvert City
AQS Site ID: 21-157-0016
Location: KY95, Calvert City, KY 42029
County: Marshall
GPS Coordinates: 37.04176, -88.35407 (WGS 84)
Date Established: January 1, 2005
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site is an air toxics monitor location off KY95 in Calvert City, Kentucky. The sample inlet is 2 meters above ground level and 43 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlet and monitor were found to be in good condition.

Monitoring Objective:

The monitoring objectives are to detect and quantify air toxic pollutants.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
Volatile Organic Compounds	1.9	SPM	EPA method TO-15	24-hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents source oriented exposure on a neighborhood scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Paducah - Cairo Interstate (072)
Site Name: Calvert City Elementary
AQS Site ID: 21-157-0018
Location: Calvert City Elementary, $6235^{\text {th }}$ Avenue, Calvert City, KY 42029
County: Marshall
GPS Coordinates: 37.02702, -88.34387(WGS 84)
Date Established: May 1, 2005
Inspection Date: July 7, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Calvert City Elementary in Calvert City, Kentucky. The sample inlets are 128 meters from the nearest road. The most recent site inspection was conducted on July 7, 2010. Upon inspection, the sample inlets and monitors were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D and E.

Monitoring Objective:

The monitoring objectives are to detect and quantify air toxic pollutants, and to provide meteorological data for air toxics analysis.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM PM 10	4.4	SPM	Gravimetric	24-hours every sixth day
- Metals PM $_{10}$		SPM	Determined from the PM $_{10}$ sample using EPA method IO 3.5	Same as PM $_{10}$
Volatile Organic Compounds	4.4	SPM	EPA method TO-15	24-hours every sixth day
Meteorological	7.5	Other	AQM grade instruments for wind speed, wind direction, humidity, barometric pressure and temperature	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents population exposure on a neighborhood scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Paducah - Cairo Interstate (072)
Site Name: Lazy Daz
AQS Site ID: 21-157-0019
Location: 4237 Gilbertsville Highway, Calvert City, KY 42029
County: Marshall
GPS Coordinates: 37.03718, -88.33411 (WGS 84)
Date Established: September 15, 2007
Inspection Date: July 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitor meet all design criteria for the monitoring network.

The monitoring site consists of a solar-powered, battery-charged air toxics monitor located on the Brady property of the Lazy Daz mobile home park, in Calvert City, Kentucky. The sample inlet is 28 meters from the nearest road. The most recent site inspection was conducted on July 8, 2010. Upon inspection, the sample inlet and monitor were found to be in good condition.

Monitoring Objectives:

The monitoring objectives are to detect and quantify air toxic pollutants.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
Volatile Organic Compounds	2.0	SPM	EPA method TO-15	24 -hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

This site represents source oriented exposure on a neighborhood scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Appalachian Intrastate (101)
Site Name: Hazard
AQS Site ID: 21-193-0003
Location: Perry County Horse Park, Hazard, KY 41701
County: Perry
GPS Coordinates: 37.28329, -83.20932 (WGS 84)
Date Established: April 1, 2000
Inspection Date: December 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the Perry County Horse Park in Hazard, Kentucky. The sample inlets 33 meters from the nearest road. The most recent site inspection was conducted on December 8, 2010. Upon inspection the sample lines and monitors were found to be in good condition. This site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to detect elevated pollutant levels for activation of emergency control procedures for ozone; and to provide pollutant levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.6	SPM EPISODE AQI	UV photometry	Continuously
PM $_{2.5}$ TEOM	5.3	SPM AQI	Tapered element oscillating microbalance, gravimetric	Continuously
Meteorological	13	Other	AQM grade instruments for wind speed, wind direction, relative humidity, barometric pressure, and temperature	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents population exposure on a neighborhood scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: Appalachian Intrastate (101)
Site Name: Pikeville Primary
AQS Site ID: 21-195-0002
Location: DOT District Office, 101 North Mayo Trail, Pikeville, KY 41501
County: Pike
GPS Coordinates: 37.48260, 82.53532 (WGS 84)
Date Established: May 1, 1994
Inspection Date: December 8, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located behind the DOT District Office building at 101 North Mayo Trail in Pikeville, KY. The sample inlets are 88 meters from the nearest road. The most recent site inspection was conducted on December 8, 2010. Upon inspection the sample lines and monitors were found to be in good condition. This site meets the requirements of 40 CFR 58, Appendices A, C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards, and to provide pollutant levels for daily index reporting.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	3.7	SPM	UV photometry	Continuously
AQI	March 1- October 31			

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents population exposure on a neighborhood scale for particulates. This site also represents population exposure on an urban scale for ozone.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: South Central Kentucky Intrastate (105)
Site Name: Franklin
AQS Site ID: 21-213-0004
Location: DOT Garage, KY 1008, Franklin, KY 42134
County: Simpson
GPS Coordinates: 36.708607, -86.566284 (WGS 84)
Date Established: June 19, 1991
Inspection Date: October 28, 2010
Inspection By: Jennifer F. Miller
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

The monitoring site is a stationary equipment shelter located on the grounds of the DOT Garage on KY1008 in Franklin, Kentucky. The sample inlet is 39 meters from the nearest road. The most recent site inspection was conducted on October 28, 2010. Upon inspection, the sample line and monitor were found to be in good condition. The site meets the requirements of 40 CFR 58, Appendices C, D, E and G.

Monitoring Objective:

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards; to measure ozone levels upwind of Bowling Green; and to provide data on interstate ozone transport.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
AEM Ozone	4.3	SPM		
AQI	UV photometry	Continuously March $1-$ October 31		
Meteorological	7.5	Other	AQM grade instruments for wind speed, wind direction, relative humidity, barometric pressure, and temperature	Continuously

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents population exposure on an urban scale.

CSA/MSA: Not in a MSA - Rural
401 KAR 50:020 Air Quality Control Region: South Central Kentucky Intrastate (105)
Site Name: Salem Elementary
AQS Site ID: 21-207-0001
Location: Salem Elementary School, 1409 S. Highway 76, Russell Springs, KY 42642
County: Russell
GPS Coordinates: 37.06944; -84.98925 (WGS 84)
Date Established: January 1, 2010
Inspection Date: Jennifer F. Miller
Inspection By: November 30, 2010
Site Approval Status: Site and monitors meet all design criteria for the monitoring network.

Superior Battery, located in Russell Springs, Kentucky, was identified as a lead source emitting over 1 tons per year of actual reported emissions in 2006. In accordance with 40 CFR Part 58 Appendix D, a lead source monitoring site is located at the Salem Elementary School in Russell Springs, Kentucky. The location of this source-oriented lead monitor was determined through the use of AERMOD modeling analysis. The sample inlet is 8.5 meters from the nearest road. The most recent site inspection was conducted on November 30, 2010. The site was found to be in accordance with 40 CFR Part 58, Appendices C, D, and E.

Monitoring Objective:

The monitoring objective is to determine compliance with National Ambient Air Quality Standards.

Monitors:

Monitor Type	Inlet Height (meters)	Designation	Analysis Method	Frequency of Sampling
FRM Lead	2.0	SLAMS	High volume air sampler. Analysis via optical emission spectroscopy.	24-hours every sixth day

Quality Assurance Status:

All Quality Assurance procedures have been implemented in accordance with 40 CFR 58, Appendix A.

Area Representativeness:

The site represents maximum concentrations, from a source, on a micro scale for lead.

This page intentionally left blank

APPENDIX A

MEMORANDUM OF AGREEMENT CINCINNATI, OH-KY-IN MSA

MEMORANDUM OF AGREEMENT

ON AIR QUALITY MONITORING FOR CRITERIA POLLUTANTS FOR THE CINCINNATI OH-KY-IN METROPOLITAN STATISTICAL AREA (MSA)

Participating Agencies:
Kentucky Department for Environmental Protection (KDEP)
Division for Air Quality (DAQ)
Hamilton County Department of Environmental Services (HCDOES)
Indiana Department of Environmental Management (IDEM)
Office of Air Quality (OAQ)

PURPOSE/OBJECTIVES/GOALS

The purpose of this Memorandum of Agreement (MOA) is to establish the Cincinnati OH-KY-IN Metropolitan Statistical Area (MSA) Criteria Pollutant Air Quality Monitoring Agreement among KDEP, IDEM, and HCDOES to collectively meet United States Environmental Protection Agency (EPA) minimum monitoring requirements for particles of an aerodynamic diameter of 10 micrometers and less (PM10), particles of an aerodynamic diameter of 2.5 micrometers and less (PM2.5), and ozone; as well as other criteria pollutant air quality monitoring deemed necessary to meet the needs of the MSA as determined reasonable by all parties. According to 40 CFR Part 58, Appendix D, the Cincinnati OH-KX-IN MSA minimum monitoring requirements (based on a population of 2,172,000) are (2) ozone monitors, (2-4) PM-10 monitors, (3) FRM PM-2.5 monitors, and (2) collocated continuous PM-2.5 monitors with the FRM PM-2.5 monitors. This MOA will formalize and reaffirm the collective agreement in order to provide adequate criteria pollutant monitoring for the Cincinnati OH-KY-IN MSA as required by 40 CFR 58 Appendix D, Section 2(e).

PM2.5 MSA monitoring network includes:

County		Confavene	Speciationit	Conlocher PM2.5:
Campbell County, KY KDEP	1	1	0	0
$\begin{gathered} \text { Boone County, KY } \\ \text { KDEP } \end{gathered}$	0	0	0	0
Hamilton County, OH HCDOES	4	2	1	1
Butler County, OH HCDOES	2	0	0	1
Clermont County, OH HCDOES	1	1	0	0
Warren County, OH HCDOES	1	1	0	0
Fravklin County, IN IDEM	0	0	0	0
Dearborn County, IN LDEM	0	0	0	0
Ohio County, IN TDEM	0	0	0	0

Criteria Air Pollutant MSA monitoring network includes:

Waverunty	3M10		N6\% ${ }^{\text {NOM }}$	(\%)	SO^{3}
Campbell County, KY KDEP	0	1	1	0	1
Boone County, KY KDEP	0	1	0	0	0
Hamilton County, OH HCDOES	3	3	1	1	1
Butler County, OH HCDOES	2	2	0	0	0
Clermont County, OH HCDOES	0	1	0	0	0
Warren County, OH HCDOES	0	1	0	0	0
Franklin County, IN TDEM	0	0	0	0	0
Dearborn County, IN IDEM	0	0	0	0	0
Ohio County, IN IDEM	0	0	0	0	0

RESPONSIBLITIES/ACTIONS

Each of the parties to this Agreement is responsible for ensuring that its obligations under the MOA are met. As conditions warrant, the affected agencies may conduct telephone conference calls, meetings, or other communications to discuss monitoring activities for the MSA. Each affected agency shall inform the other affected agencies via telephone or email of any monitoring changes occuring within its jurisdiction of the MSA at its earliest convenience, after learning of the need for the change or making the changes. Such unforeseen changes may include evictions from monitoring sites, destruction of monitoring sites due to natural disasters, or any occurrences that result in an extended (greater than one quarter) or permanent change in the monitoring network.

LIMITATIONS

- All commitments made in this MOA are subject to the availability of appropriated funds and each agency's budget priorities. Nothing in this MOA obligates KDEP; IDEM, or HCDOES to expend appropriations or to enter into any contract, assistance agreement, interagency agreement or other financial obligation.
- This MOA is neither a fiscal nor a funds obligation document. Any endeavor involving reimbursement or contribution of funds between parties to this agreement will be handled in accordance with applicable laws, regulations, and procedures, and will be subject to separate agreements that will be affected in writing by representatives of the parties.
- This MOA does not create any right or benefit enforceable by law or equity against KDEP, IDEM, or HCDOES, their officers or employees, or any other person. This MOA does not apply to any entity outside KDEP, IDEM, or HCDOES.
- No proprietary information or intellectual property is anticipated to arise out of this MOA.

TERMINATION

This Memorandum of Agreement may be revised upon the mutual consent of KDEP, IDEM, and HCDOES. Each party reserves the right to terminate this MOA. A thirty (30) day written notice must be given prior to the date of termination.

APPROVALS

We agree with the provisions outlined in this Memorandum of Agreement and commit our agencies to implement them in a spirit of cooperation and mutual support.

Kentucky Department for Environmental Protection Division for Air Quality

BY: John Lyons TITLE: \qquad
DATE:

Hamilton County Department of Environmental Services

1
BY: Cory Chadwick Cory. DFWellvef
TITLE: Director
DATE:

Indiana Department of Environmental Management Office of Air Quality
BY: Keith Baugues Kish Ban gus
TITLE: Assistant Commissioner, Office of Air Quality \qquad
DATE: \qquad

This page intentionally left blank

APPENDIX B

MEMORANDUM OF AGREEMENT EVANSVILLE, IN-KY MSA

MEMORANDUM OF AGREEMENT
 ON AIR QUALITY MONITORING FOR CRITERIA POLLUTANTS FOR
 THE EVANSVILLE, IN-HENDERSON, KY
 METROPOLITAN STATISTICAL AREA (MSA)

Participating Agencies:

Kentucky Department for Environmental Protection (KDEP)
Division for Air Quality (DAQ)
Indiana Department of Environmental Management (IDEM)
Office of Air Quality (OAQ)

PURPOSE/OBJECTIVES/GOALS

The purpose of this Memorandum of Agreement (MOA) is to establish the Evansville, IN-Henderson, KY Metropolitan Statistical Area (MSA) Criteria Pollutant Air Quality Monitoring Agreement among KDEP and IDEM to collectively meet United States Environmental Protection Agency (EPA) minimum monitoring requirements for particles of an aerodynamic diameter of 10 micrometers and less (PM 10), particles of an aerodynamic diameter of 2.5 micrometers and less (PM2.5), and ozone; as well as other criteria pollutant air quality monitoring deemed necessary to meet the needs of the MSA as determined reasonable by all parties. According to 40 CFR Part 58, Appendix D, the Evansville, IN-Henderson, KY MSA minimum monitoring requirements (based on a population of 350,000) are (2) ozone monitors, (0-1) PM-10 monitors, (1) FRM PM-2.5 monitor, and (1) collocated continuous PM- 2.5 monitor with the FRM pm- 2.5 monitor. This MOA will formalize and reaffirm the collective agreement in order to provide adequate criteria pollutant monitoring for the Evansville, $\mathbb{I N}$-Henderson, KY MSA as required by 40 CFR 58 Appendix D, Section 2, (e).

PM 2.5 MSA monitoring network includes:

Criteria Air Pollutant MSA monitoring network includes:

3away County	PM10	0	NO	Couse	
Henderson County, KY KDEP	1	1	0	0	1
Vanderburgh County, IN IDEM	1	2	1	1	1

RESPONSIBLITIES/ACTIONS

Each of the parties to this Agreement is responsible for ensuring that its obligations under the MOA are met. As conditions warrant, the affected agencies may conduct telephone conference calls, meetings, or other communications to discuss monitoring activities for the MSA. Each affected agency shall inform the other affected agencies via telephone or email of any monitoring changes occurring within its jurisdiction of the MSA at its earliest convenience, after learning of the need for the change or making the changes. Such unforeseen changes may include evictions from monitoring sites, destruction of monitoring sites due to natural disasters, or any occurrences that result in an extended (greater than one quarter) or permanent change in the monitoring network.

LIMITATIONS

- All commitments made in this MOA are subject to the availability of appropriated funds and each agency's budget priorities. Nothing in this MOA obligates KDEP or IODEM to expend appropriations or to enter into any contract, assistance agreement, interagency agreement or other financial obligation.
- This MOA is neither a fiscal nor a funds obligation document. Any endeavor involving reimbursement or contribution of funds between parties to this agreement will be handled in accordance with applicable laws, regulations, and procedures, and will be subject to separate agreements that will be affected in writing by representatives of the parties.
- This MOA does not create any right or benefit enforceable by law or equity against KDEP or IDEM, their officers or employees, or any other person. This MOA does not apply to any entity outside KDEP or IDEM.
- No proprietary information or intellectual property is anticipated to arise out of this MOA.

TERMINATION

This Memorandum of Agreement may be revised upon the mutual consent of KDEP and IDEM. Each party reserves the right to terminate this MOA: A thirty (30) day written notice must be given prior to the date of termination.

APPROVALS

We agree with the provisions outlined in this Memorandum of Agreement and commit our agencies to implement them in a spirit of cooperation and mutual support.

Kentucky Department for Enviromifental Protection
Division for Air Quality
BY: John. S. Lyons
TITLE: Director, Division for Air Quality
DATE:

Indiana Department of Environmental Management
Office of Air Quality
BY: Keith Baugues Keith Bangurs
TITLE: Assistant Commissioner, Office of Air Quality
DATE: $5 / 24 / 10$

APPENDIX C

MEMORANDA OF AGREEMENT CLARKSVILLE, TN-KY MSA

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

9TH FLOOR, L \& C ANNEX 401 CHURCH STREET NASHVILLE, TN 37243-1531

October 25, 2007

John S. Lyons, Director
Kentucky Division for Air Quality
Kentucky Department for Environmental Protection
803 Schenkel Lane
Frankfort, KY 40601
Dear Mr. Lyons:
The United States Environmental Protection Agency (EPA) revised monitoring regulations promulgated in Federal Register / Vol. 71, No. 200 / Tuesday, October 17, 2006 / Rules and Regulations, 40 CFR Part 58, Appendix D states in part: "The EPA recognizes that there may be situations where the EPA Regional Administrator and the affected State or local agencies may need to augment or to divide the overall MSA/CSA monitoring responsibilities and requirements among these various agencies to achieve an effective network design. Full monitoring requirements apply separately to each affected State or local agency in the absence of an agreement between the affected agencies and the EPA Regional Administrator." This revision of the CFR also describes the minimum monitoring requirements for the NAAQS pollutants, including continuous PM 2.5 as it applies to MSA areas where the population is sufficient to warrant monitoring for that pollutant. Tennessee and Kentucky share the Clarksville, TNKY MSA, which is comprised of Trigg and Christian counties in Kentucky and Stewart and Montgomery counties in Tennessee. The US Census Bureau lists this area as containing a population in excess of 230,000:

CBSA Code	Geographic area	Legal/statistical area description	July 1, 2005 Estimate	2000 Census
17300	Clarksville, TN-KY	Metropolitan Statistical Area	243,665	232,000

The Tennessee Division of Air Pollution Control (TDAPC) currently operates one (1) PM 2.5 FRM monitor and one (1) speciation monitor in Montgomery county and is installing a new continuous PM 2.5 monitor in this area. The TDAPC believes the operation of the existing PM 2.5 monitors; (FRM, speciation and new continuous), are sufficient to properly characterize the particulate air quality in the entire Clarksville, TN-KY MSA and comply with the requirements for both population and concentration based monitoring identified in the revised monitoring regulations as found at FR Vol. 71, No. 200 / Tuesday, October 17, 2006 p. 61321, "Table D-5" and FR Vol. 71, No. 200 / Tuesday, October 17, 2006 p. 61322, "4.7.2 Requirement for Continuous PM2.5 Monitoring". The TDAPC would like to invite the Kentucky Division for Air Quality to participate in Tennessee's annual ambient air monitoring network review. Tennessee commits to sharing with Kentucky any and all quality assured ambient air

- John S. Lyons

October 25, 2007
Page 2
monitoring data collected in the Tennessee portion of the Clarksville, TN-KY MSA. Tennessee also will notify Kentucky in advance of the intent to relocate or shutdown any of the PM 2.5 monitors referenced above so that adequate monitoring arrangements can be made to meet the entire MSA monitoring requirements for PM 2.5.

Sincerely,
(arming cr. attephems
Barry R. Stephens, PE
Director, Air Pollution Control Division

BRS/erb
cc: Beverly Banister, US EPA Region IV

ENVIRONMENTAL AND PUBLIC PROTECTION CABINET

Ernie Fletcher Governor

Department for Environmental Protection
Division for Air Quality
803 Schenkel Lane

Teresa J. Hill
Secretary

November 27, 2007

Barry R. Stephens, PE
Director
Division of Air Pollution Control
$9^{\text {th }}$ Floor, L \& C Annex
401 Church Street
Nashville, Tennessee 37243-1531
Dear Bur. Steptiens:
In a letter from your office dated October 25, 2007, the Tennessee Division of Air Pollution Control (TDAPC) agrees to operate a continuous PM2.5 monitor in the Clarksville/Hopkinsville metropolitan statistical area (MSA) to meet U.S. EPA's monitoring requirements. The Kentucky Division for Air Quality (DAQ) appreciates TDAPC's commitment to operate the PM2.5 monitor to meet all of the regulatory requirements for the MSA. DAQ also looks forward to participating in TDAPC's annual ambient air monitoring network review.

In accordance with Table D-2 of Appendix D to 40 CFR Part 58, one (1) ozone monitor is required to be operated in the Clarksville/Hopkinsville MSA. To satisfy the regulatory requirement, the DAQ agrees to operate an ozone monitor at the Hopkinsville monitoring station. DAQ commits to sharing with TDAPC any and all quality assured ambient air monitoring data collected in the Kentucky portion of the Clarksville/Hopkinsville MSA.

In the event that a shutdown or relocation of the ozone monitor is necessary, DAQ will notify TDAPC prior to the shutdown or relocation. Also, DAQ will operate the ozone monitor in accordance with all ambient air monitoring requirements located in 40 CFR Parts 50, 53, and 58.

If you have questions or concerns, please contact me at (502) 573-3382.

JSL/SOA/bss

c: Doug Neeley, US EPA Region 4

APPENDIX D

2009 LEAD WAIVER REQUEST

UNITED STATES ENVIRONMENTAL PROTECTION AGENTE REGION 4 ATLANTAFEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960 AUG 202000

Ms. Stephanie B. McCarthy
Manager
Technical Services Branch
Kentucky Division for Air Quality
200 Fair Oaks Lane
Frankfort, Kentucky 40601
Dear Ms. McCarthy:
This is in response to your letter dated June 30, 2009, requesting that the
U.S. Environmental Protection Agency (EPA) Region 4 grant a waiver of source-oriented lead (Pb) monitoring requirements for several sources. Ambient air monitoring network design criteria for Pb are found at Section 4.5 of appendix D to 40 CFR part 58. This section requires that, at a minimum, there must be one source-oriented State or Local Air Monitoring Station (SLAMS) located to measure the maximum Pb concentration in ambient air resulting from each Pb source which emits 1.0 or more tons per year. Section 4.5(a)(ii) of appendix D to 40 CFR part 58, however, provides the following provisions for a waiver of these requirements:
"(ii) The Regional Administrator may waive the requirement in paragraph 4.5(a) for monitoring near Pb sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50% of the [National Ambient Air Quality Standards (NAAQS)] (based on historical monitoring data, modeling, or other means). The waiver must be renewed once every 5 years as part of the network assessment required under 58.10(d)."

The Kentucky Division for Air Quality (KDAQ) has submitted air modeling indicating that the following sources will not contribute to a maximum Pb concentration in the ambient air in excess of 50% the NAAQS:

American Electric Power Big Sandy Generating Plant US 236 Miles N
Louisa, Kentucky 41230
Tennessee Valley Authority
Shawnee Fossil Plant
7900 Metropolis Lake Road
Paducah, Kentucky 42002

NewPage Wickliffe Mill 1724 Fort Jefferson Hill Road
Wickliffe, Kentucky 42087

North American Stainless 6870 US Highway 42 East
Ghent, Kentucky 41045

EPA has reviewed this information and concurs that the Pb emissions from each of these sources will not contribute to a maximum Pb concentration in the ambient air in excess of 50% the NAAQS. Therefore, EPA is granting a waiver of the source-oriented ambient air monitoring requirements at these sources. The waivers must be renewed once every 5 years as part of the network assessment required under $40 \mathrm{CFR} \S 58.10$ (d).

EPA also concurs with KDAQ's modeling submitted with the June 30, 2009, letter which indicates that the following sources do not qualify for a waiver of the monitoring requirements.

Enersys	Superior Battery
761 Eastern Bypass	2515 Highway 910
Richmond, Kentucky 40475	Russell Springs, Kentucky 42642

Calgon Carbon 15024 US Route 23
Catlettsburg, Kentucky 41129
KDAQ will be required to conduct ambient air monitoring at these sources under Section 4.5 of appendix D to 40 CFR part 58. Should you have any questions, please feel free to contact Doug Neeley at (404) 562-9097 or Daniel Garver of the EPA Region 4 staff at (404) 562-9839 or via e-mail at Garver.Daniel@epa.gov.

Sincerely,
 Acting Regional Administrator
cc: Dick Schutt, EPA R4

AERMOD Modeling Analysis in Support of the Lead NAAQS Waiver Requests for the State of Kentucky

Introduction

On November 12, 2008, the United States Environmental Protection Agency (EPA) strengthened the National Ambient Air Quality Standard (NAAQS) for lead. The revised standard is now set at $0.15 \mu \mathrm{~g} / \mathrm{m}^{3}$ for the primary (health-based) and secondary (welfare-based) standards. In conjunction with the revision of the lead NAAQS, the EPA promulgated new network design criteria, which can be found in 40 CFR Part 58, Appendix D, paragraph 4.5. Source-oriented monitoring is required for those facilities which emit 1.0 ton per year (tpy) or more of lead in the air.

The Kentucky Division for Air Quality (Division) received formal notification from EPA Region 4 in April 2009 of the sources within the Commonwealth that were subject to lead monitoring per the revised regulations. Those seven facilities are listed in this document as Appendix A: Kentucky Facilities with Lead Emissions over 1.0 TPY. The facilities include: American Electric Power - Big Sandy Plant (Big Sandy), in Louisa, KY; Calgon Carbon in Catlettsburg, KY; Enersys in Richmond, KY; Newpage in Wickliffe, KY; North American Stainless (NAS) in Ghent, KY; Superior Battery in Russell Springs, KY; and Tennessee Valley Authority (TVA) Shawnee Fossil Plant in West Paducah, KY.

Section 4.5(ii) of Appendix D to 40 CFR 58 contains waiver provision for sourceoriented lead monitoring, if a state or local agency can demonstrate that the lead source will not contribute to a maximum lead concentration in ambient air in excess of one-half of the Pb NAAQS (i.e., $0.075 \mu \mathrm{~g} / \mathrm{m}^{3}$). Consequently, the Division has modeled the facilities to determine whether or not to pursue waivers. Additionally, recent Kentucky Emissions Inventory data has been reviewed for this purpose.

Emissions Inventory Data

The Division's Emissions Inventory Section (EIS) has compiled calculations for 2006-2008 data for those seven facilities listed in the aforementioned Appendix A: Kentucky Facilities with Lead Emissions over 1.0 TPY.

Emissions Inventory Reports for all seven facilities are included with this document on a compact disc (CD) for review. The CD (labeled KY DAQ EIS Data) also contains Kentucky Emissions Inventory data files for 2006, 2007, and 2008, as well as permits for the facilities in question. Table 1 shows the results of the recent EIS calculations.

Table 1. Kentucky Emissions Inventory Data

Facility Name	Location	2006 Actual Emissions (tpy)	2007 Actual Emissions (tpy)	2008 Actual Emissions (tpy)
Big Sandy	Louisa	2.37	0.61	Not complete
Calgon Carbon	Catlettsburg	6.01	6.06	6.29
Enersys	Richmond	0.11	2.16	1.45
Newpage	Wickliffe	7.39	6.28	Not complete
North American Stainless	Ghent	0.98	0.59	0.65
Superior Battery	Russell Springs	1.35	0.67	0.61
TVA Shawnee	West Paducah	8.33	8.42	8.57

Selection Criteria for the Modeled Facilities

Pursuant to 40 CFR Part 58, Appendix D, paragraph 4.5(a), monitoring agencies must use the most recent National Emissions Inventory (NEI) or other scientifically justifiable data to determine if a facility emits more than 1 tpy of lead. The Division, at the direction of EPA Region 4, chose to use both state emissions inventory data and Toxic Release Inventory (TRI) data from 2006 and 2007. 40 CFR Part 58 Appendix D 4.5 (ii) states: "The Regional Administrator may waive the requirement in paragraph 4.5(a) for monitoring near lead (Pb) sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50% of the NAAQS (based on historical monitoring data, modeling, or other means)." The lead NAAQS is based on a 3-month rolling average.

Model Parameters

Urban versus Rural Determination

The facilities modeled in this analysis were all modeled as rural. The rural setting was chosen based on the population density procedure as stated in Section 7.2.3(d) of 40 CFR 51, Appendix W. In addition, none of the facilities modeled fall into a highly industrialized category as mentioned subsequently in Section 7.2.3(e) of Appendix W.

Meteorological Data

In compliance with the EPA air quality modeling guideline found in Section 8.3 of 40 CFR Part 51, Appendix W, the modeling performed for each facility relied on five years of consecutive meteorological data taken from the most representative surface and upper air meteorological stations. A summary of general meteorological modeling data can be found in Table 2. The meteorological data
years were chosen in part due to their availability and the completeness of the data. Unfortunately, the funding for more recent data for this particular project, which is in excess of $\$ 3,150$, was not available. Therefore, the facilities were modeled with meteorological data ranging from 1988 to 1992, or 1989 to 1993, which is free to the public. Data sets deemed complete for the respective five years were chosen.

Table 2. Meteorological Modeling Data

Facility	Met Years	Surface Air Station	Upper Air Station
Big Sandy	$1988-1992$	Huntington/Tri-State Airport	Huntington/Tri-State Airport
Calgon Carbon	$1988-1992$	Huntington/Tri-State Airport	Huntington/Tri-State\| Airport
Enersys	$1988-1992$	Lexington/Blue- grass Field	Huntington/Tri-State Airport
Newpage	$1989-1993$	Paducah/WSO Airport	Paducah/WSO Airport
North American Stainless	$1988-1992$	Covington/ Greater Cincinnati	Dayton/Wright Patterson AFB
Superior Battery	$1988-1992$	Lexington/Blue- grass Field	Nashville/Int'I Airport
TVA Shawnee Fossil Plant	$1989-1993$	Paducah/WSO Airport	Paducah/WSO Airport

Representativeness/Surface Characteristics

According to the AERMOD Implementation Modeling Guidelines, the meteorological stations should be representative of the facility. The National Weather Service (NWS) meteorological stations chosen for each facility depended on the facility's location, topography, land use, and surface characteristics in reference to each facility. The surface roughness values at each facility were compared against the surface roughness values of the respective meteorological surface station and modeled separately to determine the difference in surface characteristics between them. In the interest of being conservative towards human health, the surface characteristics which yielded the highest monthly concentration were used in calculating the 3-month rolling average. The surface roughness data (albedo, bowen ratio, and surface roughness values) for each of these facilities and meteorological stations can be found in Appendix B: AERSURFACE Tables. Surface roughness parameters are tabulated in Table 3. In AERSURFACE, the default 1 km radius was chosen, temporal resolution was set to "monthly", $12-30^{\circ}$ averaged sectors were used throughout the analysis, and the application site coordinates were set to the facility.

Table 3. AERSURFACE defaults for the Meteorological Stations/Sites Used

Facility	Surface Roughness Radius (km)	Surface Moisture	Temporal Resolution	Number of 30 Sectors
Big Sandy	1.0	Average	Monthly	12
Calgon Carbon	1.0	Average	Monthly	12
Enersys	1.0	Average	Monthly	12
Newpage	1.0	Average	Monthly	12
NAS	1.0	Average	Monthly	12
Superior Battery	1.0	Average	Monthly	12
TVA Shawnee	1.0	Average	Monthly	12

The land use was classified based on the 1992 National Land Cover Data (NLCD 92) which is available from the USGS. The NLCD 92 contains a 21 -category land cover classification, which is based on Landsat imagery.

Pollutant Averaging

The pollutant averaging time was set to 1 -month. The 1 -month average was converted to a 3 -month rolling average using the lead post processor, which is available from EPA at http://www.epa.gov/ttn/amtic/pb-monitoring.html.

Building Downwash

Building downwash was not deemed necessary for facilities with very tall stacks, such as those found at coal-fired power plants. The stack heights for both AEP Big Sandy and TVA Shawnee exceed the Good Engineering Practices (GEP) stack heights. In addition, any facility significantly over or under the $0.075 \mu \mathrm{~g} / \mathrm{m}^{3}$ lead concentration on a 3 -month rolling average did not have the building downwash (BPIP) algorithm applied in the model. Therefore, building downwash was only applied to the modeling for Superior Battery based on preliminary modeling showing a 3 -month rolling average concentration at one-half the lead NAAQS.

Lead Emission Sources

The lead sources for each facility are tabulated in Appendix C of this document. The emission sources are based on the emissions data of the year that triggered the analysis as found in Appendix A.

AEP Big Sandy and TVA Shawnee are both electric utilities. AEP Big Sandy uses 2 pulverized coal (pc) combustors. In the case of TVA Shawnee, 9 pc's and 1 bubbling fluidized bed combustor are used. In addition, both facilities have smaller auxiliary units. Hence, their lead emissions primarily stem from the combustion of coal. Enersys and Superior Battery are both battery manufacturers. Their lead emissions are related to battery plating and manufacture. Calgon Carbon produces activated carbon and carbon-based media. Their primary feedstock is bituminous coal, which is also the source material for their lead emissions. Newpage is a paper producer whose primary lead emission point is their combination boiler. North American Stainless produces stainless steel and their primary lead emissions are from a furnace.

Receptors/Terrain

As stated in Section 8.2.2 of Appendix A to Appendix W of 40 CFR 51, "Receptor sites for refined modeling should be utilized in sufficient detail to estimate the highest concentration and possible violations of a NAAQS or PSD increment. In designing a receptor network, the emphasis should be placed on receptor resolution and location, not total number of receptors. The selection of receptor sites should be a case-by-case determination taking into consideration the topography, the climatology, monitor sites, and the results of the initial screening procedure."

The receptor grid parameters (spacing and number of receptors) were chosen in a way to encompass a majority of the plume as well as the significant impact area (SIA) in which the maximum impact occurs. The receptor grids are optimized to have the maximum concentration occur within a 100x100 meter grid. This is achieved by either expanding a tiered receptor grid or including a separate (uniform Cartesian) grid to cover the maximum impact area.

Digital Elevation Maps (DEM) or National Elevation Data (NED) maps available from the USGS were used for the AERMAP processor for each facility.

Table 4 provides a summary of parameters used in AERMOD, which includes the number and distance between receptors, whether building downwash was used, whether plant boundaries were defined, and what type of terrain data was chosen for the facilities.

Table 4. AERMOD General Summary

Facility	Model	Total Receptors	Receptor Grid Parameters	Building Downwash	Plant Boundaries	Terrain DEM or NED Data
Big Sandy	Airport Model	1604	Distance from Center/Tier Spacing $1000 \mathrm{~m} / 100 \mathrm{~m}$ $5000 \mathrm{~m} / 500 \mathrm{~m}$ $10000 \mathrm{~m} / 1000 \mathrm{~m}$ Plus uniform Cartesian grid $100 \mathrm{~m} \times 100 \mathrm{~m}$ to encompass SIA	No	Yes	NED
	Site Model	1163	Distance from Center/Tier Spacing $1000 \mathrm{~m} / 100 \mathrm{~m}$ $5000 \mathrm{~m} / 500 \mathrm{~m}$ $10000 \mathrm{~m} / 1000 \mathrm{~m}$	No	Yes	NED
Calgon Carbon	Airport Model	1507	Distance from Center/Tier Spacing $1500 \mathrm{~m} / 100 \mathrm{~m}$ $3500 \mathrm{~m} / 500 \mathrm{~m}$ $8000 \mathrm{~m} / 1000 \mathrm{~m}$	No	No	NED

	Site Model	1507	Distance from Center/Tier Spacing $1500 \mathrm{~m} / 100 \mathrm{~m}$ $3500 \mathrm{~m} / 500 \mathrm{~m}$ $8000 \mathrm{~m} / 1000 \mathrm{~m}$	No	No	NED
Enersys	Airport Model	1039	Distance from Center/Tier Spacing $100 \mathrm{~m} / 100 \mathrm{~m}$ $3000 \mathrm{~m} / 500 \mathrm{~m}$	No	Yes	NED
	Site Model	1039	Distance from Center/Tier Spacing $100 \mathrm{~m} / 100 \mathrm{~m}$ $3000 \mathrm{~m} / 500 \mathrm{~m}$	No	Yes	NED
NAS	Airport Model	3281	Distance from Center/Tier Spacing $2000 \mathrm{~m} / 100 \mathrm{~m}$ $10000 \mathrm{~m} / 500 \mathrm{~m}$ $15000 \mathrm{~m} / 1000 \mathrm{~m}$	No	Yes	NED
	Site Model	3281	Distance from Center/Tier Spacing $2000 \mathrm{~m} / 100 \mathrm{~m}$ $10000 \mathrm{~m} / 500 \mathrm{~m}$ $15000 \mathrm{~m} / 1000 \mathrm{~m}$	No	Yes	NED
NewPage	Airport Model	1594	Distance from Center/Tier Spacing $1000 \mathrm{~m} / 100 \mathrm{~m}$ $5000 \mathrm{~m} / 500 \mathrm{~m}$ $15000 \mathrm{~m} / 1000 \mathrm{~m}$ Plus uniform Cartesian grid $100 \mathrm{~m} \times 100 \mathrm{~m}$ to encompass SIA	No	Yes	NED
	Site Model	1602	Distance from Center/Tier Spacing $1000 \mathrm{~m} / 100 \mathrm{~m}$ $5000 \mathrm{~m} / 500 \mathrm{~m}$ $15000 \mathrm{~m} / 1000 \mathrm{~m}$ Plus uniform Cartesian grid $100 \mathrm{~m} \times 100 \mathrm{~m}$ to encompass SIA	No	Yes	NED
Superior Battery	Airport Model	1410	Distance from Center/Tier Spacing $1500 \mathrm{~m} / 100 \mathrm{~m}$ $3500 \mathrm{~m} / 500 \mathrm{~m}$ $8000 \mathrm{~m} / 1000 \mathrm{~m}$	Yes	No	NED
	Site Model	1410	Distance from Center/Tier Spacing $1500 \mathrm{~m} / 100 \mathrm{~m}$ $3500 \mathrm{~m} / 500 \mathrm{~m}$ $8000 \mathrm{~m} / 1000 \mathrm{~m}$	Yes	No	NED
TVA Shawnee	Airport Model	2949	$3000 \mathrm{~m} \times 3000 \mathrm{~m}$ Plus uniform Cartesian grid $100 \mathrm{~m} \times 100 \mathrm{~m}$ to encompass SIA	No	Yes	DEM

| | Site
 Model | 3556 | $3000 \mathrm{~m} \times 3000 \mathrm{~m}$
 Plus three uniform
 Cartesian grids: $100 \mathrm{~m} \times$
 100 m to encompass
 SIA
 $750 \mathrm{~m} \times 500 \mathrm{~m}$
 $500 \mathrm{~m} \times 100 \mathrm{~m}$ | No | Yes |
| :--- | :--- | :--- | :--- | :--- | :--- | DEM | |
| :--- |

Non-Default Parameters

The Division used a non-default option in the control pathway. The toxics nondefault option was chosen to access the total deposition output. In the source pathway, particulate was selected for gas and particle deposition. Method 2 was selected for handling particle deposition by total particulate mass. Particle inputs for Method 2 consisted of the fine particle fraction equaling 0.75 and the mass mean particle diameter equaling 0.5 microns. These values were selected from Appendix B of the AERMOD Deposition Algorithms - Science Document (Revised Draft) found on EPA's Support Center for Regulatory Air Models (SCRAM) website at http://www.epa.gov/scram001/7thconf/aermod/aer scid.pdf.

Results

Using the parameters given in this document, the models were run. The results for each facility are tabulated Table 5.

Table 5. 3-Month Rolling Average Concentrations

Facility	Surface Characteristics	One-half Lead NAAQS $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	3-Month Rolling Average Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
Big Sandy Plant	Airport	0.075	0.034
	Site	0.075	0.050
	Airport	0.075	0.289
	Site	0.075	0.286
Newpage	Airport	0.075	0.244
	Site	0.075	0.407
	Airport	0.075	0.004
Superior Battery	Site	0.075	0.015
	Sirport	0.075	0.001
TVA Shawnee Fossil Plant	Airport	0.075	0.001
	Site	0.075	0.982
	Sirport	0.075	1.341

Upon review, the output concentrations from the models show that Calgon Carbon, Enersys, and Superior Battery substantially surpass the modeled ambient concentration required to receive a waiver and indicate a modeled exceedance of the new lead NAAQS. Data in Table 5 also illustrate that the 3month rolling averages for AEP Big Sandy, Newpage, TVA Shawnee, and North American Stainless are substantially below one-half the lead NAAQS.

Modeled Plots

Plots of the modeled high $1^{\text {st }}$ high monthly impacts for the facilities can be found in Appendix D of this document. These figures are contour plots of the ambient lead concentrations as modeled. Please note, the concentration shown in the figures do not represent a 3-month rolling average but instead represent the highest monthly impact for the meteorological years chosen. Receptors are not placed within plant boundaries for the facilities that have defined fence lines. Air within the plant boundary of these facilities are represented as white areas. The facilities without defined physical barriers delineating the property line have receptors within their plant boundaries in accordance with the definition of ambient air found in 40 CFR 50.1(e). These facilities boundaries are depicted as red boundary lines.

Conclusion

As mentioned previously, modeling has demonstrated that a waiver for monitoring lead at AEP Big Sandy, Newpage, TVA Shawnee, and North American Stainless can be requested based upon a maximum 3-month rolling average at or below one-half the lead NAAQS. The Calgon Carbon, Enersys, and Superior Battery facilities emissions have been modeled and shown to exceed one-half the lead NAAQS. Therefore, Calgon Carbon, Enersys, and Superior Battery should be monitored in accordance with 40 CFR Part 58, Appendix D, paragraph 4.5(a).

Additional Information

Data has been complied for each facility and is available on the attached compact disc (CD) labeled KY DAQ Lead Modeling Data: AERMOD. Each facility has a designated folder which contains files specific the airport and site models. Each model has three folders: the Post Processor folder, the AERMET folder, and the AERMOD folder. The Post Processor folder contains the 3-Month Processor Output File (.out), Plot File (.plt), and a Post File (.pos). The AERMET folder contains the Profile File (.pfl) for Upper Air, Surface File (.sfc), AERMET Log File (.log), and the AERMET Output File (.out). The AERMOD folder contains the AERMOD Input File (.adi) and the AERMOD Output File (.ado).
Appendix A. Kentucky Facilities with Lead Emissions over 1.0 TPY

Facility			State	Lead Emissions (tpy)
AMERICAN ELECTRIC POWER - BIG SANDY PLANT	LOUISA	KY	$\mathbf{2 . 3 7}$	2006 S/L Data
CALGON CARBON	CATLETTSBURG	KY	$\mathbf{6 . 0 6}$	2007 S/L Data
ENERSYS	RICHMOND	KY	$\mathbf{2 . 1 6}$	$2007 \mathrm{~S} / \mathrm{L}$ Data
NEWPAGE	WICKLIFFE	KY	$\mathbf{6 . 2 8}$	$2007 \mathrm{~S} / \mathrm{L}$ Data
NORTH AMERICAN STAINLESS	GHENT	KY	$\mathbf{1 . 1 4}$	2007 TRI
SUPERIOR BATTERY	RUSSELL SPRINGS	KY	$\mathbf{1 . 3 5}$	$2006 \mathrm{~S} / \mathrm{L}$ Data
TVA SHAWNEE FOSSIL PLANT	WEST PADUCAH	KY	$\mathbf{8 . 4 2}$	2007 S/L Data

Appendix B. AERSURFACE Tables

Superior Battery Airport					Superior Battery Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.79	0.067	1	1	0.17	0.79	0.065
1	2	0.17	0.79	0.035	1	2	0.17	0.79	0.079
1	3	0.17	0.79	0.034	1	3	0.17	0.79	0.051
1	4	0.17	0.79	0.036	1	4	0.17	0.79	0.041
1	5	0.17	0.79	0.062	1	5	0.17	0.79	0.05
1	6	0.17	0.79	0.043	1	6	0.17	0.79	0.052
1	7	0.17	0.79	0.042	1	7	0.17	0.79	0.068
1	8	0.17	0.79	0.038	1	8	0.17	0.79	0.103
1	9	0.17	0.79	0.076	1	9	0.17	0.79	0.095
1	10	0.17	0.79	0.08	1	10	0.17	0.79	0.034
1	11	0.17	0.79	0.057	1	11	0.17	0.79	0.073
1	12	0.17	0.79	0.045	1	12	0.17	0.79	0.055
2	1	0.17	0.79	0.067	2	1	0.17	0.79	0.065
2	2	0.17	0.79	0.035	2	2	0.17	0.79	0.079
2	3	0.17	0.79	0.034	2	3	0.17	0.79	0.051
2	4	0.17	0.79	0.036	2	4	0.17	0.79	0.041
2	5	0.17	0.79	0.062	2	5	0.17	0.79	0.05
2	6	0.17	0.79	0.043	2	6	0.17	0.79	0.052
2	7	0.17	0.79	0.042	2	7	0.17	0.79	0.068
2	8	0.17	0.79	0.038	2	8	0.17	0.79	0.103
2	9	0.17	0.79	0.076	2	9	0.17	0.79	0.095
2	10	0.17	0.79	0.08	2	10	0.17	0.79	0.034
2	11	0.17	0.79	0.057	2	11	0.17	0.79	0.073
2	12	0.17	0.79	0.045	2	12	0.17	0.79	0.055
3	1	0.15	0.41	0.075	3	1	0.15	0.43	0.096

| \cdots | ナ | ナ | ∇ | ナ | \checkmark | ナ | ナ | ナ | ∇ | \checkmark | ナ | － | 1 | 1 | 1 | 1 | \bigcirc | 1 | 1 | 10 |
| :---: |

○ை

KY Division for Air Quality
Lead Waiver Request

$\stackrel{N}{\dot{o}}$		$\stackrel{\rightharpoonup}{\hat{o}}$	¢	$\stackrel{\mathrm{F}}{\mathrm{f}}$							-			¢		$\underset{o}{2}$										\%				
$\stackrel{\infty}{\dot{\circ}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\underset{0}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\stackrel{\infty}{\dot{0}}$	$\underset{0}{\infty}$	$\frac{\infty}{\dot{c}}$	\cdots	$\frac{\infty}{\infty}$	$\underset{\sim}{\circ}$	$\frac{\infty}{\dot{o}}$	$\frac{\infty}{\vdots}$	∞	\propto			$\stackrel{\infty}{\circ}$			\propto										
m	-		\bigcirc					$=$		-	\sim	m	\checkmark	\bigcirc	\bigcirc											\sim	\bigcirc		∞	0
\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	-	\bigcirc	N	N	人	N	N	\wedge		\wedge	-		-	-	\bigcirc		∞		∞	∞		∞	∞

0.47
0.47
0.47
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78

 U

 の○ー

$$
\underset{\sim}{\sim}
$$

$$
\text { Page } 24 \text { of } 73
$$

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}
N & N & N & N & N & N & N & N & N & N & N & N & N & N \\
\infty & \infty \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
F \mathscr{F} \subseteq \subseteq
$$

0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61

0.058
0.06
0.071
0.565
0.436
0.352
0.317
0.452
0.773
0.575
0.278
0.284
0.058
0.06
0.071
0.565
0.436
0.68
0.65
0.791
1.096
0.857
0.447
0.44
0.116
0.12
0.115
0.638

∞ の

0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91

0.107
0.731
0.695
0.68
0.65
0.791
1.096
0.857
0.443
0.427
0.107
0.112
0.107
0.731
0.695
0.68
0.65
0.791
1.096
0.857
0.443
0.427
0.107
0.112
0.107
0.731
0.695
0.23
0.208
0.73

12	5	0.16	0.82	0.373	12	5	0.17	0.91	0.058
12	6	0.16	0.82	0.198	12	6	0.17	0.91	0.689
12	7	0.16	0.82	0.195	12	7	0.17	0.91	0.204
12	8	0.16	0.82	0.041	12	8	0.17	0.91	0.557
12	9	0.16	0.82	0.043	12	9	0.17	0.91	0.279
12	10	0.16	0.82	0.055	12	10	0.17	0.91	0.489
12	11	0.16	0.82	0.383	12	11	0.17	0.91	0.048
12	12	0.16	0.82	0.294	12	12	0.17	0.91	0.146

Newpage Airport					Newpage Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.72	0.04	1	1	0.16	0.49	0.492
1	2	0.17	0.72	0.054	1	2	0.16	0.49	0.507
1	3	0.17	0.72	0.037	1	3	0.16	0.49	0.624
1	4	0.17	0.72	0.026	1	4	0.16	0.49	0.422
1	5	0.17	0.72	0.022	1	5	0.16	0.49	0.211
1	6	0.17	0.72	0.022	1	6	0.16	0.49	0.342
1	7	0.17	0.72	0.02	1	7	0.16	0.49	0.385
1	8	0.17	0.72	0.014	1	8	0.16	0.49	0.115
1	9	0.17	0.72	0.017	1	9	0.16	0.49	0.285
1	10	0.17	0.72	0.021	1	10	0.16	0.49	0.536
1	11	0.17	0.72	0.024	1	11	0.16	0.49	0.475
1	12	0.17	0.72	0.028	1	12	0.16	0.49	0.354
2	1	0.17	0.72	0.04	2	1	0.16	0.49	0.492
2	2	0.17	0.72	0.054	2	2	0.16	0.49	0.507
2	3	0.17	0.72	0.037	2	3	0.16	0.49	0.624
2	4	0.17	0.72	0.026	2	4	0.16	0.49	0.422
2	5	0.17	0.72	0.022	2	5	0.16	0.49	0.211

م

$$
\text { Page } 31 \text { of } 73
$$

 $\underset{\sim}{\mathbb{N}} \underset{\sim}{\sim}$

KY Division for Air Quality
Lead Waiver Request Lead Waiver Request
Page 33 of 73

$$
\begin{aligned}
& 0.31 \\
& \hline 0.31
\end{aligned}
$$

人

Length
0.036
0.023
0.05
0.15
0.209
0.167
0.051
0.023
0.026
0.036
0.017
0.022
0.036
0.023
0.05
0.15
0.209
0.167
0.051
0.023
0.026
0.036
0.017
0.022
0.051
0.034
0.076
0.235
0.316
0.265
0.078

∞ の○下

\bigcirc	\pm	－	\pm	\pm	－	－	\pm	I	\％	\％	\％	\％	7	7	＋	\pm	\％	\pm	寸	－	\pm	\pm	7			－	F	f	－					\checkmark

$\stackrel{o}{\circ}$	$\underset{o}{0}$	$\stackrel{0}{\circ}$	$\stackrel{\bullet}{\circ}$	$\stackrel{0}{0}$	$\stackrel{\bullet}{\circ}$	$\stackrel{\odot}{\circ}$	$\stackrel{e}{\circ}$	$\stackrel{\oplus}{\circ}$	$\stackrel{0}{\circ}$	$\frac{\bullet}{0}$	$\stackrel{c}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{e}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{c}{\circ}$	$\frac{\bullet}{0}$	$\stackrel{c}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{c}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$
－	10	\bigcirc	N	∞	の	\bigcirc	F	\sim	\leftharpoondown	N	\cdots	－	10	\bullet	N	∞	の	\bigcirc	F	\sim	\leftharpoondown	N	\cdots	＊	ம	\bigcirc	N	∞	の	은	

\bigcirc	\bullet	N	N	N	N	N	N	N	N	N	N	N	\cdots	∞																	
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\|o	$\left\lvert\, \begin{aligned} & 1 \\ & \stackrel{N}{0} \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \overline{5} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{j} \\ & \substack{2 \\ 0 \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	交	$\stackrel{\Gamma}{N}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\|o	$\begin{array}{\|c} 10 \\ N \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\stackrel{8}{0}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ָ	$\stackrel{\Gamma}{\mathrm{N}} \stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\|l	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}\right.$	\|	$\begin{aligned} & \dot{\prime} \\ & \underset{\sim}{2} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \stackrel{9}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{o} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$

ナ

	ما\|	مـا	$\begin{aligned} & 1 \\ & \\ & 0 \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & 1 \\ & N \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{N}$	N	ما	N		$\stackrel{N}{N}$	N	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	Ω	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	می	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & 1 \\ & N \\ & 0 \end{aligned}$		$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\begin{aligned} & N \\ & N \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & 0 \end{aligned}$	

$\stackrel{0}{\circ}$	$\frac{0}{0}$	$\stackrel{e}{0}$	$\frac{0}{\circ}$	$\stackrel{o}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{\ominus}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{c}{\circ}$	$\stackrel{0}{\circ}$	$\frac{0}{0}$	$\stackrel{0}{\circ}$	$\frac{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{c}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{c}{0}$	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	\bigcirc

11	8	0.17	0.78	0.044	11	8	0.16	0.75	0.217
11	9	0.17	0.78	0.027	11	9	0.16	0.75	0.226
11	10	0.17	0.78	0.096	11	10	0.16	0.75	0.217
11	11	0.17	0.78	0.07	11	11	0.16	0.75	0.07
11	12	0.17	0.78	0.045	11	12	0.16	0.75	0.09
12	1	0.17	0.79	0.047	12	1	0.16	0.75	0.036
12	2	0.17	0.79	0.061	12	2	0.16	0.75	0.023
12	3	0.17	0.79	0.05	12	3	0.16	0.75	0.05
12	4	0.17	0.79	0.044	12	4	0.16	0.75	0.15
12	5	0.17	0.79	0.053	12	5	0.16	0.75	0.209
12	6	0.17	0.79	0.06	12	6	0.16	0.75	0.167
12	7	0.17	0.79	0.056	12	7	0.16	0.75	0.051
12	8	0.17	0.79	0.034	12	8	0.16	0.75	0.023
12	9	0.17	0.79	0.019	12	9	0.16	0.75	0.026
12	10	0.17	0.79	0.055	12	10	0.16	0.75	0.036
12	11	0.17	0.79	0.04	12	11	0.16	0.75	0.017
12	12	0.17	0.79	0.035	12	12	0.16	0.75	0.022

KY Division for Air Quality
Lead Waiver Request Lead Waiver Request
Appendix C. Lead Emission Sources

Facility	Source ID	$\begin{aligned} & \text { X Coord. } \\ & {[\mathrm{m}]} \end{aligned}$	Y Coord. [m]	Base Elevation [m]	Release Height [m]	$\begin{array}{\|l\|} \hline \text { Emission } \\ \text { Rate } \\ \text { [g/s] } \\ \hline \end{array}$	Gas Exit Temperature [K]	$\begin{aligned} & \text { Gas Exit Velocity } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	Inside Diameter [m]	Description
Big Sandy	COMB01	358314.98	4226074.65	$1.75 \mathrm{E}+02$	250.85	0.126	429.82	29.87	8.595	Unit 1Boiler- Coal Use
	COMB02	358314.98	4226074.28	$1.75 \mathrm{E}+02$	250.85	- 0.126	429.82	29.87	8.595	Unit 2 Boiler-Coal Use
	COMB04	358357.69	4226142.21	$1.75 \mathrm{E}+02$	31.09	0.126	659.26	17.983	2.103	Aux. Unit 2 Boiler
Calgon Carbon	045	361167.00	4244297.94	168.08	29.87	0.1744	435.93	18.288	0.853	Reactivation Furnance
Enersys	001	738518	4179618	302.04	17.07	8.97E-05	322.04	17.678	1.524	rid Casting baghouse (4 total)
	002	738627	4179511	300.6	13.41	0.0001945	299.82	20.726	1.524	Assembly Baghouse (4 total)
	003	738632	4179534	305.25	13.41	0.0001207	299.82	21.031	1.067	Plate Finishing Baghouse (2 total)
	004	738543	4179577	302.16	15.85	0.001701	299.82	25.908	0.61	Iron Clad Filling Baghouse
	005	738545	4179581	302.28	15.85	0.001189	299.82	19.507	0.61	Iron Clad Filling Baghouse
	006	738542	4179573	302.08	15.85	0.01298	299.82	19.507	0.701	Iron Clad Filling Baghouse
	011	738532	4179615	302.32	18.29	$9.65 \mathrm{E}-05$	355.37	11.582	0.366	Lead Oxide Mill \#1 Baghouse
	021	738538	4179614	302.48	18.29	0.04423	355.37	14.326	0.366	Lead Oxide Mill \#2 Baghouse
	024	738636	4179538	306.19	12.19	1.74E-05	299.82	23.774	1.006	Assembly Baghouse
	025	738508	4179616	301.75	12.19	5.54E-05	299.82	17.678	1.433	Pasting Baghouse
	031	738535	4179614	302.39	18.29	3.97E-05	355.37	26.822	0.366	Lead Oxide Mill \#3 Baghouse
North American Stainless	S1	666748.474	4287588.65	147.5	64.92	1.40E-09	313.15	21.92	1.219	Natural Gas - Boiler
	S2	666776.71	4287551	147.46	64.92	0.0328	408.15	19.48	4.572	Natural Gas Boiler/Furnace
	S3	667246.62	4287783.1	148.98	29.87	$9.75 \mathrm{E}-06$	477.59	10.24	0.914	Furnace
	S4	667027.48	4287593.63	149.29	49.99	3.02E-06	477.59	4.02	1.999	Furnace
Newpage	COMB5009	314777.414	4090785.83	105.78	71.32	$1.75 \mathrm{E}-01$	449.82	17.556	2.713	Bark/Combination Boiler
	008	314893.44	4090844.76	109.01	24.38	5.75E-03	349.82	9.144	1.753	Lime Kiln

KY Division for Air Quality
Lead Waiver Request Lead Waiver Request

Superior Battery	PBO1	678882.784104156 .63	309.88	15.54	6.33E-06	407.04	7.925	0.381	Oxide Mill 1
	PBO2	678888.024104159 .91	309.75	15.54	6.12E-06	379.82	7.925	0.381	Oxide Mill 2
	C1	678849.234104100 .07	310.38	13.410	0.0007216	317.04	14.021	1.219	Grid Casting Operation
	P1	678840.574104179 .77	313.03	13.410	0. 0001385	338.71	9.754	1.524	Pasting Operation
	3 P _AB	6787974104154	314.49	13.11	0.002087	310.93	7.01	1.829	3 Process Operation a\&b Lines
	3P_C	678839.454104378 .74	313.99	12.19	0.03577	310.93	10.668	1.067	3 Process Operation c Lines
	SP_1	678835.724104354 .56	314.41	7.62	$4.32 \mathrm{E}-08$	310.93	14.021	2.53	Smalls Parts Casting
	SP_2	678851.224104354 .37	314.47	6.1	$5.75 \mathrm{E}-10$	310.93	14.021	0.253	Battery Cable Manufacturing
TVA Shawnee	STCK1	342436.924113016 .64	94.71	243.84	0.1211	429.82	29.428	8.534	Units 1-5
	STCK2	342087.824113168 .96	95.89	243.84	0.1211	422.04	29.632	8.53	Units 6-10

KY Division for Air Quality Lead Waiver Request
Figure 4.1 Calgon Carbon-Site, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

KY Division for Air Quality Lead Waiver Request
Page 59 of 73
Figure 7.1 North American Stainless -Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

KY Division for Air Quality Lead Waiver Request
Figure 9.1 Newpage-Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

KY Division for Air Quality
Lead Waiver Request
Lead Waiver Request
Page 67 of 73
Figure 11.1 Superior Battery-Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

KY Division for Air Quality
Lead Waiver Request
Figure 13.1 TVA-Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

APPENDIX E

2011 LEAD WAIVER REQUEST

AERMOD Modeling Analysis in Support of the Lead NAAQS Waiver Requests for the State of Kentucky

Table of Contents

Introduction 3
Emissions Inventory Data 4
Selection Criteria for the Modeled Facilities 4
Model Parameters 5
Urban versus Rural Determination 5
Meteorological Data 5
Representativeness/Surface Characteristics5
Pollutant Averaging 6
Building Downwash 6
Lead Emission Sources 6
Receptors/Terrain 7
Background 9
Non-Default Parameters9
Results 10
Modeled Plots 10
Conclusion 10
ADDITIONAL INFORMATION 10
Appendix A. Kentucky Facilities with Lead Emissions over 0.5TPY 12
Appendix B. AERSURFACE Tables 13
Appendix C. Lead Emission Sources 31
Appendix D. Radial Plot Map 36
Appendix E. Modeled Impacts 36
Appendix F. Files on CD 52

Introduction

On November 12, 2008, the United States Environmental Protection Agency (EPA) strengthened the National Ambient Air Quality Standard (NAAQS) for lead. The revised standard was set at $0.15 \mu \mathrm{~g} / \mathrm{m}^{3}$ for the primary (health-based) and secondary (welfarebased) standards. In conjunction with the revision of the lead NAAQS, the EPA promulgated new network design criteria, detailed in 40 CFR Part 58, Appendix D, paragraph 4.5. Pursuant to the revised regulations, source-oriented monitoring was required for those facilities which emitted 1.0 ton per year (tpy) or more of lead in the air.

The Kentucky Division for Air Quality (Division) received formal notification from EPA Region 4 in April 2009 of the sources within the Commonwealth that were subject to lead monitoring per the revised regulations. Seven facilities were identified: American Electric Power - Big Sandy Plant (Big Sandy), in Louisa, KY; Calgon Carbon in Catlettsburg, KY; Enersys in Richmond, KY; Newpage in Wickliffe, KY; North American Stainless (NAS) in Ghent, KY; Superior Battery in Russell Springs, KY; and Tennessee Valley Authority (TVA) Shawnee Fossil Plant in West Paducah, KY. Section 4.5(ii) of Appendix D to 40 CFR 58 allows that some sources may be eligible to receive waivers, if the state agency can demonstrate that the lead source will not contribute to a maximum lead concentration in ambient air in excess of 50% of the NAAQS. Therefore, those seven facilities with lead emissions over 1.0 tpy were modeled using the near field regulatory model AERMOD. The document, AERMOD Modeling Analysis in Support of the Lead NAAQS Waiver Requests for the State of Kentucky (June 2009), explained the procedure and results of modeling of those seven facilities. Waivers were requested for AEP Big Sandy, New Page Wickliffe Mill, North American Stainless, and Tennessee Valley Authority Shawnee Fossil Plant. On August 20, 2009, the EPA granted approval to the waiver request for these four facilities and exempted monitoring in these locations.

On December 30, 2009, the EPA published proposed revisions to the lead monitoring requirements in the Federal Register. The proposed rule would lower the emissions threshold for facilities from 1.0 tpy to 0.5 tpy emissions. Following the publication of the proposed rule, the Division compiled a list of facilities that emitted 0.5 tpy of lead based on information from the Division's Emissions Inventory Section (KY-EIS), National Emission Inventory (NEI), and Toxics Release Inventory (TRI). Four facilities were identified: CC Metals \& Alloys, LLC in Calvert City, KY; B \& B Automotive in Madisonville, KY; Modern Welding Company, Inc in Elizabethtown, KY; and Kentucky Utilities Company-Ghent Generation Station in Ghent, KY.

On December 27, 2010, revised monitoring requirements for the new lead NAAQS were finalized and published in the Federal Register. The final rule lowered the emissions threshold for lead sources from 1.0 tpy to 0.5 tpy, as proposed. Pursuant to this revised regulation, the Division compiled another, more current list of facilities emitting 0.5 tpy of lead. Four additional sources were identifed: Blue Grass Army Depot in Richmond, KY; Tennessee Valley Authority (TVA) Paradise Fossil Plant in Drakesboro, KY; US Army Fort Campbell Military Reservation in Fort Campbell, KY; and US Army Fort Knox in Fort Knox, KY.

Hence, upon examination of these eight aforementioned facilities, it was determined that the Modern Welding Company, Inc has not exceeded more than 82 pounds of lead emissions in a single year according to their Semi-Annual Report for the years 2005 through 2009. In addition, B \& B Automotive has gone out of business. Therefore, Modern Welding Company, Inc and B \& B Automotive were excluded from further analysis. Moreover, the Division determined that Toxics Release Inventory (TRI) data were over-reported for both the Ft. Campbell and Ft. Knox military bases. Emissions are significantly less than 0.5 tpy with corrected emissions data for these two facilities. Hence, only four facilities were left to consider. These facilities are listed in Appendix A: Kentucky Facilities with Lead Emissions over 0.5 tpy in this document and exclude the previously modeled facilities from the 2009 Lead Waiver Request.

Emissions Inventory Data

The Division's KY-EIS has completed calculations for 2005-2009 data, which indicates that the four facilities listed in Appendix A emit more than 0.5 tpy of lead. However, as previously noted, Modern Welding Company, Inc, B \& B Automotive, US Army Fort Campbell Military Reservation, and US Army Fort Knox were excluded from further analysis based on an evaluation of the corresponding emissions data and operational status. Modeling was completed to determine if a waiver should be pursued for the remaining four facilities.

Emissions Inventory Reports for the four modeled facilities are included with this document on a compact disc (CD) for review. The CD contains Kentucky Emissions Inventory data files for 2005-2009. Table 1 shows the results of the recent EIS calculations.

Table 1. Kentucky Emissions Inventory Data ("Bolded values are the emission values used in
the modeling)
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Facility } \\ \text { Name }\end{array} \begin{array}{l}\text { 2005 Actual } \\ \text { Emissions } \\ \text { (tpy) }\end{array} \quad \begin{array}{l}\text { 2006 Actual } \\ \text { Emissions } \\ \text { (tpy) }\end{array} \quad \begin{array}{l}\text { 2007 Actual } \\ \text { Emissions } \\ \text { (tpy) }\end{array} \quad \begin{array}{l}\text { 2008 Actual } \\ \text { Emissions } \\ \text { (tpy) }\end{array} \quad \begin{array}{l}\text { 2009 Actual } \\ \text { Emissions } \\ \text { (tpy) }\end{array}\right]$.

Selection Criteria for the Modeled Facilities

In accordance with the EPA Memo titled "Lead NAAQS Ambient Air Monitoring Network: Network Design Options Under Consideration" dated March 3, 2008, Division compiled a list of facilities that emitted over 0.5 tpy of lead. Each facility's emissions data was
acquired from the 2005-2009 KY Division for Air Quality Emissions Inventory Section (KY-EIS), 2005 National Emission Inventory (NEI), and 2005 Toxics Release Inventory (TRI). The values used in the model were accepted based on the source of data; KYEIS data being the first choice for values, then NEI, then TRI. 40 CFR Part 58 Appendix D 4.5 (ii) states: "The Regional Administrator may waive the requirement in paragraph 4.5(a) for monitoring near lead (Pb) sources if the State or, where appropriate, local agency can demonstrate the Pb source will not contribute to a maximum Pb concentration in ambient air in excess of 50% of the NAAQS (based on historical monitoring data, modeling, or other means)." The lead NAAQS is based on a 3-month rolling average.

Model Parameters

Urban versus Rural Determination

The facilities modeled in this analysis were all modeled as rural. The rural setting was chosen based on the population density procedure as stated in Section 7.2.3(d) of 40 CFR Part 51, Appendix W. In addition, none of the facilities modeled fall into a highly industrialized category as mentioned subsequently in Section 7.2.3(e) of Appendix W.

Meteorological Data

In compliance with the EPA air quality modeling guideline found in Section 8.3 of 40 CFR Part 51, Appendix W, the modeling performed for each facility relied on five years of consecutive meteorological data taken from the most representative surface and upper air meteorological stations. ASOS 1-minute wind data was utilized in conjunction with the surface air station data in AERMET. A summary of general meteorological modeling data can be found in Table 2. The meteorological data years were chosen in part due to their availability and the completeness of the data. The facilities were modeled with meteorological data ranging from 2005 to 2009.

Table 2. Meteorological Modeling Data

Facility	Met Years	Surface Air Station/ 1-min ASOS	Upper Air Station
CC Metals \& Alloys	$2005-2009$	PAH Paducah Barkley Field	BNA Nashville, Tennessee
KY Utilities - Ghent	$2005-2009$	CVG Cincinnati/Greater Airport	ILN Wilmington, Ohio
Blue Grass Army Depot	$2005-2009$	LEX Blue Grass/Lexington	ILN Wilmington, Ohio
TVA Paradise	$2005-2009$	PAH Paducah Barkley Field	BNA Nashville, Tennessee

Representativeness/Surface Characteristics

According to the AERMOD Implementation Modeling Guidelines, the meteorological stations should be representative of the facility. The National Weather Service (NWS) meteorological stations chosen for each facility depended on the facility's location, topography, land use, and surface characteristics in reference to each facility. The surface roughness values at each facility were compared against the surface roughness
values of the respective meteorological surface station and modeled separately to determine the difference in surface characteristics between them. In the interest of being conservative towards human health, the surface characteristics which yielded the highest monthly concentration were used in calculating the 3-month rolling average. The surface roughness data (albedo, bowen ratio, and surface roughness values) for each of these facilities and meteorological stations can be found in Appendix B. AERSURFACE Tables. Surface roughness parameters are tabulated in Table 3. In AERSURFACE, the default 1 km radius was chosen, temporal resolution was set to "monthly", twelve 30° averaged sectors were used throughout the analysis.

Table 3. AERSURFACE defaults for the Meteorological Stations/Sites Used

Facility	Surface Moisture	Temporal Resolution	Number of 30° Sectors
CC Metals \& Alloys	Average	Monthly	12
KY Utilities - Ghent	Average	Monthly	12
Blue Grass Army Depot	Average	Monthly	12
TVA Paradise	Average	Monthly	12

The land use was classified based on the 1992 National Land Cover Data (NLCD 92) which is available from the USGS. The NLCD 92 contains a 21-category land cover classification, which is based on Landsat imagery.

Pollutant Averaging

The pollutant averaging time was set to 1-month. The 1-month average was converted to a 3-month rolling average using the lead post processor, which is available from EPA at http://www.epa.gov/ttn/amtic/pb-monitoring.html.

Building Downwash

Building downwash was not deemed necessary for these facilities since their modeled concentration fell significantly under the $0.075 \mu \mathrm{~g} / \mathrm{m}^{3}$ lead concentration on a 3-month rolling average. Therefore, neither facility had the building downwash (BPIP) algorithm applied in the model.

Lead Emission Sources

CC Metals \& Alloys, LLC produces ferrosilicon and various ferroalloy specialty products. Primary emission units include four submerged electric arc furnaces (EAF). KY UtilitiesGhent Generation Station is an electric power generating station consisting of four (4) pulverized coal-fired, dry bottom boilers. Blue Grass Army Depot neutralizes chemical weapons and agent stockpiles on-site. TVA Paradise Fossil Plant operates three cyclone-furnaces, coal-fired boiler units for electricity production. The facility also consist of three distillate oil-fired heating boilers, eleven distillate oil-fired space heaters, three natural-draft cooling towers, solid fuel, limestone, ash, and gypsum handling processes and coal handling equipment and coal wash plant disposal processes.

The lead sources for each facility are tabulated in Appendix C. The emission sources are based on the emissions data of the year that triggered the analysis as found in Appendix A.

Receptors/Terrain

As stated in Section 7.2.2 of Appendix W of 40 CFR 51, "Receptor sites for refined modeling should be utilized in sufficient detail to estimate the highest concentration and possible violations of a NAAQS or PSD increment. In designing a receptor network, the emphasis should be placed on receptor resolution and location, not total number of receptors. The selection of receptor sites should be a case-by-case determination taking into consideration the topography, the climatology, monitor sites, and the results of the initial screening procedure."

The receptor grid parameters (spacing and number of receptors) were chosen in a way to encompass a majority of the plume as well as the significant impact area (SIA) in which the maximum impact occurs. The receptor grids are optimized to have the maximum concentration occur within a 100 by 100 meter grid. This is achieved by either expanding a tiered receptor grid or including a separate (Discrete Cartesian) grid to cover the maximum impact area.

National Elevation Data (NED) maps available from the USGS were used for the AERMAP processor for each facility.

Table 4 provides a summary of parameters used in AERMOD, which includes the number and distance between receptors, whether building downwash was used, whether plant boundaries were defined, and what type of terrain data was chosen for the facilities.

Table 4. AERMOD General Summary

Facility	Model	Total Receptors	Receptor Grid Parameters	Building Downwash	Plant Boundaries	Terrain
 Alloys LLC	Airport Model	5883	50×50 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing 40×40 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
	Site Model	6885	50×50 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing	No	Yes	NED
		40×40 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA				

KY Utilities Ghent	Airport Model	3435	40×40 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing 20×20 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
	Site Model	3435	40×40 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing 20×20 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
Blue Grass Army Depot	Airport Model	3605	40×40 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing 30×30 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
	Site Model	6105	40×40 grid with $1000 \mathrm{~m} \times 1000 \mathrm{~m}$ spacing 70×70 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
TVA Paradise	Airport Model	5719	40×40 grid with $1500 \mathrm{~m} \times 1500 \mathrm{~m}$ spacing 70×70 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED
	Site Model	5719	40×40 grid with $1500 \mathrm{~m} \times 1500 \mathrm{~m}$ spacing 70×70 grid with $100 \mathrm{~m} \times 100 \mathrm{~m}$ spacing surrounding the SIA	No	Yes	NED

Background

Nearby lead sources within a 50 km radius of the four modeled facilities were examined for background contributions. Nearby lead sources emissions data was acquired from the 2005-2009 KY Division for Air Quality Emissions Inventory Section (KY-EIS). In each case, the year with the highest actual emission was modeled. 50 km radius plots representing the modeled facilities and the nearby lead source can be found in Appendix D.

Within the Source Pathway, source groups were assigned to each facility and modeled for maximum impacts and background contributions. The default SRCGROUP ALL was used for each model. Once the point source maximum impact receptor was assigned, the nearby lead source group was selected for the impact on the aforementioned receptor. This nearby lead source concentration at this receptor was used as the lead background concentration. The 3 -month rolling average from the point source was added to a lead background concentration for comparison to the NAAQS.

TVA Paradise is not in proximity of major lead emitting sources. In the interest of being conservative towards human health, the lead emission tons per year for TVA Paradise were doubled to simulate background contributions.

A spreadsheet containing the 3 -month rolling averages, background concentrations from nearby lead sources, and contribution concentration from the modeled sources on the nearby lead source can be found in Appendix F.

Non-Default Parameters

The Division used a non-default option in the control pathway. The toxics non-default option was chosen to access the total deposition output. In the source pathway, particulate was selected for gas and particle deposition. Method 2 was selected for handling particle deposition by total particulate mass. Particle inputs for Method 2 consisted of the fine particle fraction equaling 0.75 and the mass mean particle diameter equaling 0.5 microns. These values were selected from Appendix B of the AERMOD Deposition Algorithms - Science Document (Revised Draft) found on EPA's Support Center for Regulatory Air Models (SCRAM) website at http://www.epa.gov/scram001/7thconf/aermod/aer scid.pdf.

In the interest of being conservative towards human health, total deposition was selected without wet and dry depletion for all model runs. In turn, a decreased rate of lead particles in the pollutant mass should be removed from the plume as it travels downwind.

Results

Using the parameters given in this document, the models were run. The results for each facility are tabulated in Table 5.

Table 5. 3-Month Rolling Average Concentrations

Facility	Surface Characteristics	One-half Lead NAAQS $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	3-Month Rolling Average Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
CC Metals \& Alloys	Airport	0.075	0.002
	Site	0.075	0.003
KY Utilities - Ghent	Airport	0.075	0.002
	Site	0.075	0.002
Blue Grass Army Depot	Airport	0.075	0.008
	Site	0.075	0.002
	Airport	0.075	0.001
TVA Paradise	Site	0.075	0.001

Upon review, the output concentrations from the models show that the 3 -month rolling averages for CC Metals \& Alloys, LLC, KY Utilities Co-Ghent Generation Station, Blue Grass Army Depot, and TVA Paradise are substantially below one-half the lead NAAQS.

Modeled Plots

Plots of the modeled high $1^{\text {st }}$ high monthly impacts for the facilities can be found in Appendix E. These figures are contour plots of the ambient lead concentrations as modeled. Please note, the concentration shown in the figures do not represent a 3month rolling average but instead represent the highest monthly impact for the meteorological years chosen. The facility's boundary is depicted with red boundary lines.

Conclusion

As mentioned previously, modeling has demonstrated that a waiver for monitoring lead at CC Metals \& Alloys, LLC, KY Utilities Co-Ghent Generation Station, Blue Grass Army Depot, and TVA Paradise can be requested based upon a maximum 3-month rolling average below one-half the lead NAAQS.

Additional Information

In addition, data has been complied for each facility and is available on the attached compact disc. Each facility has a designated folder which contains files specific to the airport and site models. Each model has three folders: the Post Processor folder, the AERMET folder, and the AERMOD folder. The Post Processor folder contains the 3Month Processor Output File (.out), Plot File (.plt), and a Post File (.pos). The AERMET
folder contains the Profile File (.pfl) for Upper Air, Surface File (.sfc), AERMET Log File (.log), and the AERMET Output File (.out). The AERMOD folder contains the AERMOD Input File (.adi) and the AERMOD Output File (.ado). Additional Modeling files for Blue Grass Army Depot and KU Ghent were used to evaluate nearby source lead contributions. The list of modeling files can be found in Appendix F.
KY Division for Air Quality
2011 Lead Waiver Request
Page 12 of 59
Appendix A. Kentucky Facilities with Lead Emissions over 0.5TPY

Facility	City	State	Lead Emissions (tpy)	Data Source
CC Metals \& Alloys LLC	Calvert City	Kentucky	0.692	2006 KY EIS Actual Emissions
KY Utilities Co - Ghent Generation Station	Ghent	Kentucky	0.622	2008 KY EIS Actual Emissions
Blue Grass Army Depot	Richmond	Kentucky	0.570	2009 KY EIS Actual Emissions
TVA Paradise Fossil Plant	Drakesboro	Kentucky	1.325	2005 KY EIS Actual Emissions

Appendix B. AERSURFACE Tables

CC Metals \& Alloys - Airport					CC Metals \& Alloys -Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.72	0.024	1	1	0.17	0.64	0.023
1	2	0.17	0.72	0.057	1	2	0.17	0.64	0.05
1	3	0.17	0.72	0.038	1	3	0.17	0.64	0.257
1	4	0.17	0.72	0.025	1	4	0.17	0.64	0.45
1	5	0.17	0.72	0.022	1	5	0.17	0.64	0.359
1	6	0.17	0.72	0.022	1	6	0.17	0.64	0.171
1	7	0.17	0.72	0.021	1	7	0.17	0.64	0.151
1	8	0.17	0.72	0.014	1	8	0.17	0.64	0.146
1	9	0.17	0.72	0.018	1	9	0.17	0.64	0.333
1	10	0.17	0.72	0.021	1	10	0.17	0.64	0.243
1	11	0.17	0.72	0.024	1	11	0.17	0.64	0.082
1	12	0.17	0.72	0.034	1	12	0.17	0.64	0.021
2	1	0.17	0.72	0.024	2	1	0.17	0.64	0.023
2	2	0.17	0.72	0.057	2	2	0.17	0.64	0.05
2	3	0.17	0.72	0.038	2	3	0.17	0.64	0.257
2	4	0.17	0.72	0.025	2	4	0.17	0.64	0.45
2	5	0.17	0.72	0.022	2	5	0.17	0.64	0.359
2	6	0.17	0.72	0.022	2	6	0.17	0.64	0.171
2	7	0.17	0.72	0.021	2	7	0.17	0.64	0.151
2	8	0.17	0.72	0.014	2	8	0.17	0.64	0.146
2	9	0.17	0.72	0.018	2	9	0.17	0.64	0.333
2	10	0.17	0.72	0.021	2	10	0.17	0.64	0.243
2	11	0.17	0.72	0.024	2	11	0.17	0.64	0.082
2	12	0.17	0.72	0.034	2	12	0.17	0.64	0.021
3	1	0.14	0.36	0.035	3	1	0.14	0.38	0.024
3	2	0.14	0.36	0.079	3	2	0.14	0.38	0.051
3	3	0.14	0.36	0.054	3	3	0.14	0.38	0.257
3	4	0.14	0.36	0.037	3	4	0.14	0.38	0.461
3	5	0.14	0.36	0.032	3	5	0.14	0.38	0.393

$$
\begin{aligned}
& \begin{array}{l}
\text { KY Division for Air Quality } \\
\text { 2011 Lead Waiver Request }
\end{array} \\
& \text { Page } 15 \text { of } 59
\end{aligned}
$$

かののの の の の の の の の の の の の

$\underset{\sim}{\overrightarrow{0}} \underset{\sim}{\sim}$
KY Division for Air Quality
2011 Lead Waiver Request

かののの の の の の の の の の の の の

$\underset{\sim}{n}$	$\left.\begin{array}{\|c} \underset{N}{N} \\ \dot{O} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} n \\ 0 \\ 0 \\ 0 \end{gathered}$	$\stackrel{\circ}{\circ}$		\underbrace{n}_{0}	$0 \begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$$	$\begin{gathered} 7 \\ 7 \\ \hline \end{gathered}$		$$				-
$\stackrel{1}{6}$	$\begin{gathered} \mathrm{N} \\ \mathrm{O} \end{gathered}$	$$	$$	$\begin{aligned} & \text { すे } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { d } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { to } \\ & \hline \end{aligned}$	-	$\begin{aligned} & \text { O. } \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} \hline \text { U } \\ 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & \text { O} \\ & \hline \end{aligned}$	$\begin{array}{lll} \text { dit } \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { O. } \\ & \hline \text { O. } \\ & \hline \end{aligned}$				¢

KY Utilities-Ghent - Airport					KY Utilities-Ghent -Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.79	0.042	1	1	0.16	0.68	0.021
1	2	0.17	0.79	0.061	1	2	0.16	0.68	0.131
1	3	0.17	0.79	0.052	1	3	0.16	0.68	0.034
1	4	0.17	0.79	0.045	1	4	0.16	0.68	0.214
1	5	0.17	0.79	0.056	1	5	0.16	0.68	0.408
1	6	0.17	0.79	0.06	1	6	0.16	0.68	0.33
1	7	0.17	0.79	0.057	1	7	0.16	0.68	0.189
1	8	0.17	0.79	0.03	1	8	0.16	0.68	0.347
1	9	0.17	0.79	0.019	1	9	0.16	0.68	0.243
1	10	0.17	0.79	0.055	1	10	0.16	0.68	0.018
1	11	0.17	0.79	0.036	1	11	0.16	0.68	0.018
1	12	0.17	0.79	0.042	1	12	0.16	0.68	0.04
2	1	0.17	0.79	0.042	2	1	0.16	0.68	0.021
2	2	0.17	0.79	0.061	2	2	0.16	0.68	0.131

$$
\begin{aligned}
& \begin{array}{l}
\text { KY Division for Air Quality } \\
\text { 2011 Lead Waiver Request }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\sim} \underset{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { KY Division for Air Quality } \\
2011 \text { Lead Waiver Request }
\end{array} \\
& \begin{array}{l}
\text { 2011 Lead Wa } \\
\text { Page } 19 \text { of } 59
\end{array}
\end{aligned}
$$

KY Division for Air Quality
2011 Lead Waiver Request
Page 20 of 59

$\stackrel{\infty}{0}$ ©

KY Division for Air Quality
2011 Lead Waiver Request
Page 21 of 59

Blue Grass Army Depot - Airport					Blue Grass Army Depot -Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.79	0.067	1	1	0.17	0.78	0.05
1	2	0.17	0.79	0.036	1	2	0.17	0.78	0.164
1	3	0.17	0.79	0.032	1	3	0.17	0.78	0.17
1	4	0.17	0.79	0.028	1	4	0.17	0.78	0.109
1	5	0.17	0.79	0.063	1	5	0.17	0.78	0.083
1	6	0.17	0.79	0.053	1	6	0.17	0.78	0.045
1	7	0.17	0.79	0.04	1	7	0.17	0.78	0.222
1	8	0.17	0.79	0.038	1	8	0.17	0.78	0.117
1	9	0.17	0.79	0.066	1	9	0.17	0.78	0.048
1	10	0.17	0.79	0.089	1	10	0.17	0.78	0.009
1	11	0.17	0.79	0.06	1	11	0.17	0.78	0.01
1	12	0.17	0.79	0.045	1	12	0.17	0.78	0.013
2	1	0.17	0.79	0.067	2	1	0.17	0.78	0.05
2	2	0.17	0.79	0.036	2	2	0.17	0.78	0.164
2	3	0.17	0.79	0.032	2	3	0.17	0.78	0.17
2	4	0.17	0.79	0.028	2	4	0.17	0.78	0.109
2	5	0.17	0.79	0.063	2	5	0.17	0.78	0.083
2	6	0.17	0.79	0.053	2	6	0.17	0.78	0.045
2	7	0.17	0.79	0.04	2	7	0.17	0.78	0.222
2	8	0.17	0.79	0.038	2	8	0.17	0.78	0.117
2	9	0.17	0.79	0.066	2	9	0.17	0.78	0.048
2	10	0.17	0.79	0.089	2	10	0.17	0.78	0.009
2	11	0.17	0.79	0.06	2	11	0.17	0.78	0.01
2	12	0.17	0.79	0.045	2	12	0.17	0.78	0.013
3	1	0.15	0.41	0.075	3	1	0.14	0.41	0.073
3	2	0.15	0.41	0.047	3	2	0.14	0.41	0.238
3	3	0.15	0.41	0.045	3	3	0.14	0.41	0.261
3	4	0.15	0.41	0.04	3	4	0.14	0.41	0.163
3	5	0.15	0.41	0.09	3	5	0.14	0.41	0.126
3	6	0.15	0.41	0.073	3	6	0.14	0.41	0.066
3	7	0.15	0.41	0.055	3	7	0.14	0.41	0.329

$$
\begin{aligned}
& \begin{array}{l}
\text { KY Division for Air Quality } \\
\text { 2011 Lead Waiver Request }
\end{array} \\
& \text { Page } 23 \text { of } 59
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { KY Division for Air Quality } \\
\text { 2011 Lead Waiver Request }
\end{array} \\
& \text { Page } 24 \text { of } 59
\end{aligned}
$$

KY Division for Air Quality
2011 Lead Waiver Request
Page 25 of 59

KY Division for Air Quality 2011 Lead Waiver Request Page 26 of 59									
11	11	0.18	0.79	0.075	11	11	0.18	0.78	0.015
11	12	0.18	0.79	0.056	11	12	0.18	0.78	0.021
12	1	0.17	0.79	0.067	12	1	0.17	0.78	0.05
12	2	0.17	0.79	0.036	12	2	0.17	0.78	0.164
12	3	0.17	0.79	0.032	12	3	0.17	0.78	0.17
12	4	0.17	0.79	0.028	12	4	0.17	0.78	0.109
12	5	0.17	0.79	0.063	12	5	0.17	0.78	0.083
12	6	0.17	0.79	0.053	12	6	0.17	0.78	0.045
12	7	0.17	0.79	0.04	12	7	0.17	0.78	0.222
12	8	0.17	0.79	0.038	12	8	0.17	0.78	0.117
12	9	0.17	0.79	0.066	12	9	0.17	0.78	0.048
12	10	0.17	0.79	0.089	12	10	0.17	0.78	0.009
12	11	0.17	0.79	0.06	12	11	0.17	0.78	0.01
12	12	0.17	0.79	0.045	12	12	0.17	0.78	0.013
TVA Paradise -Airport					TVA Paradise -Site				
Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length	Month	Sector	Albedo	Bowen Ratio	Surface Roughness Length
1	1	0.17	0.72	0.024	1	1	0.16	0.72	0.101
1	2	0.17	0.72	0.057	1	2	0.16	0.72	0.279
1	3	0.17	0.72	0.038	1	3	0.16	0.72	0.356
1	4	0.17	0.72	0.025	1	4	0.16	0.72	0.258
1	5	0.17	0.72	0.022	1	5	0.16	0.72	0.122
1	6	0.17	0.72	0.022	1	6	0.16	0.72	0.015
1	7	0.17	0.72	0.021	1	7	0.16	0.72	0.216
1	8	0.17	0.72	0.014	1	8	0.16	0.72	0.338
1	9	0.17	0.72	0.018	1	9	0.16	0.72	0.214
1	10	0.17	0.72	0.021	1	10	0.16	0.72	0.355
1	11	0.17	0.72	0.024	1	11	0.16	0.72	0.22
1	12	0.17	0.72	0.034	1	12	0.16	0.72	0.057
2	1	0.17	0.72	0.024	2	1	0.16	0.72	0.101
2	2	0.17	0.72	0.057	2	2	0.16	0.72	0.279
2	3	0.17	0.72	0.038	2	3	0.16	0.72	0.356
2	4	0.17	0.72	0.025	2	4	0.16	0.72	0.258

$\underset{\sim}{\sim} \underset{\sim}{\sim}$

综
$\underset{\sim}{\overrightarrow{0}} \underset{\sim}{\sim}$
KY Division for Air Quality
2011 Lead Waiver Request
2011 Lead W
Page 29 of 59

∞ の

KY Division for Air Quality
2011 Lead Waiver Request
Page 30 of 59
익ㅇㄱㄱ
KY Division for Air Quality Page 31 of 59
Appendix C. Lead Emission Sources

Facility	X Coord. [m]	Y Coord. [m]	Base Elevation [m]	Release Height [m]	Emission Rate [g/s]	Gas Exit Temperature [K]	Gas Exit Velocity [m/s]	Inside Diameter [m]	Description
CC Metals \& Alloys LLC	380133.87	4101969.33	104.86	27.13	0.001965	422.04	2.130	10.300	Furnace \#6
	380075.79	4102089.10	103.91	27.13	0.005938	449.82	3.960	10.300	$\begin{gathered} \hline \text { Furnace } \\ \# 15 \end{gathered}$
	380133.70	4102085.70	103.94	27.13	0.01201	449.82	3.960	10.300	Furnace \#16
KY Utilities Co Ghent Generation Station	670643.77	4290826.33	148.20	176.784	. 009652396	324.82	7.0104	11.278	UNIT 1
	670498.06	4290762.85	150.51	201.168	. 007007657	422.04	14.53896	9.144	UNIT 2/3
	670314.39	4290654.10	150.33	201.168	. 001244702	422.04	15.27048	9.144	UNIT 4
Blue Grass Army Depot	746015.59	4172332.19	276.85	112.47	1.793E-06				OB/OD
	743418.91	4172931.61	307.32	10.668	$5.160 \mathrm{E}-06$	699.82	20.763	. 823	Paint Booth
	745073.57	4172428.1	292.56	9.144	1.742E-05	309.82	29.66618	. 610	Detonation Chamber
	744499.92	4172664.62	301.03	14.630	$1.260 \mathrm{E}-05$	373.15	16.4531	. 405	ISCWO
TVA Paradise	501896.96	4123758.32	129.24	182.88	. 01499899	340.93	22.12848	7.925	Stack1
	501743.11	4123601.17	128.61	243.84	. 00623191	419.26	40.69080	8.169	Stack3
	501837.94	4123692.62	128.78	182.88	. 01689054	340.93	22.12848	7.925	Stack2

Appendix D. Radial Plot Maps
Figure 1.0 CC Metals \& Alloys - TVA Shawnee (Nearby Lead Source)

Figure 2.0 Ghent Generation Station - Gallatin Steel and North American Stainless (Nearby Lead Sources)

KY Division for Air Quality
2011 Lead Waiver Request
Figure 4.0 TVA Paradise (No Nearby Lead Source)

Appendix E. Modeled Impacts

Figure 1.0 CC Metals \& Alloys - Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Entire Domain

Figure 2.0 CC Metals \& Alloys - Site, High $1^{\text {st }}$ High Monthly Average Concentration, Entire Domain

UTM East [m]

Figure 3.0 KY Utilities-Ghent - Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Entire Domain

Figure 5.1 Blue Grass Army Depot - Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

Figure 7.0 TVA Paradise - Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Entire Domain

Figure 7.1 TVA Paradise - Airport, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

Figure 8.0 TVA Paradise - Site, High $1^{\text {st }}$ High Monthly Average Concentration, Entire Domain
Figure 8.1 TVA Paradise - Site, High $1^{\text {st }}$ High Monthly Average Concentration, Controlling Concentration

KY Division for Air Quality
2011 Lead Waiver Request
Appendix F. Files on CD
Table 1.0 CC Metals and Alloys
Table 1.1 CC Metals and Alloys

KY-EIS Document
CC Metals and Alloys KY-EIS 2005-2009.pdf

Table 2.0 KY Utilities-Ghent

\begin{tabular}{|c|c|c|c|}
\hline \& AERMET \& AERMOD \& Post Processor

\hline \multirow[t]{8}{*}{Airport

Site} \& GHENT_air.PFL \& \multirow[t]{2}{*}{GHENT_a1.ADI} \& GHENTA1.POS

\hline \& GHENT_air.SFC \& \& GHENTA1.out

\hline \& GHENT_air_Aersurface.log \& \multirow[t]{2}{*}{GHENT_a1.ADO} \& GHENTA1MOH1GALL.PLT

\hline \& GHENT_air _Aersurface.OUT \& \& GHENTA1MOH1G001.PLT

\hline \& GHENT_site.PFL \& \multirow[t]{2}{*}{GHENT_s1.ADI} \& GHENTS1.POS

\hline \& GHENT_site.SFC \& \& GHENTS1.out

\hline \& GHENT_site _Aersurface.log \& \multirow[t]{2}{*}{GHENT_s1.ADO} \& GHENTS1MOH1GALL.PLT

\hline \& GHENT_site _Aersurface.OUT \& \& GHENTS1MOH1G001.PLT

\hline
\end{tabular}

Table 2.1 KY Utilities-Ghent

KY-EIS Document
KY Utilities-Ghent KY-EIS 2005-2009.pdf

KY Division for Air Quality 2011 Lead Wai
Page 54 of 59
Table 3.0 Blue Grass Army Depot

	AERMET	AERMOD	Post Processor
Airport	BGAD_air.PFL	BGAD_a1.ADI	BGADA1.POS
	BGAD_air.SFC		BGADA1.out
	BGAD_air_Aersurface.log	BGAD_a1.ADO	BGADA1MOH1GALL.PLT
	BGAD_air_Aersurface.OUT		BGADA1MOH1G001.PLT
Site	BGAD_site.PFL	BGAD_s1.ADI	BGADS1.POS
	BGAD_site.SFC		BGADS1.0ut
	BGAD_site_Aersurface.log	BGAD_s1.ADO	BGADS1MOH1GALL.PLT
	BGAD_site_Aersurface.OUT		BGADS1MOH1G001.PLT

Table 3.1 Blue Grass Army Depot

Blue Grass Army Depot-EIS 2005-2009.pdf
Table 4.0 TVA Paradise

\begin{tabular}{|c|c|c|c|}
\hline \& AERMET \& AERMOD \& Post Processor

\hline \multirow[t]{8}{*}{Airport

Site} \& PARA_air.PFL \& \multirow[t]{2}{*}{PARA a.ADI} \& PARAA.POS

\hline \& PARA_air.SFC \& \& PARAA.out

\hline \& PARA_air _Aersurface.log \& \multirow[t]{2}{*}{PARA_a.ADO} \& PARAA MOH1GALL.PLT

\hline \& PARA air Aersurface. OUT \& \& PARAA MOH1G001.PLT

\hline \& PARA_site.PFL \& \multirow[t]{2}{*}{PARA_s.ADI} \& PARAS.POS

\hline \& PARA_site.SFC \& \& PARAS.out

\hline \& PARA_site _Aersurface.log \& \multirow[t]{2}{*}{PARA s.ADO} \& PARASMOH1GALL.PLT

\hline \& PARA_site_Aersurface.OUT \& \& PARASMOH1G001.PLT

\hline
\end{tabular}

KY Division for Air Quality
TABLE 5.0 Additional Background Modeling Files Blue Grass Army Depot
KY Division for Air Quality
TABLE 6.0 Additional Background Modeling Files KY Utilities-Ghent
TABLE 7.0 3-Month Rolling Average and Applied Background Concentration

Source 3 - Month Rolling Conc. Modeled Facility	Surface	Maximum impact Receptor UTM (X) coordinates	Maximum impact Receptor UTM (Y) coordinates	$1 / 2$ half Pb NAAQS ($\mu \mathrm{g} / \mathrm{m} 3$)	Maximum impacted Modeled Facility receptor month conc. ($\mu \mathrm{g} / \mathrm{m} 3$)	Rolling 3 month conc. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Background conc. from Nearby Lead Source at Modeled Facility max. impact receptor ($\mu \mathrm{g} / \mathrm{m} 3$)	Rolling 3 month conc. + Background Conc. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
CCMA	Airport	380427.19	4102249.32	0.075	0.0028	0.002	0.00012	0.002
	Site	380358.35	4102233.05	0.075	0.0047	0.003	0.00013	0.003
GHENT	Airport	669081.44	4289912.44	0.075	0.0002	0.000	0.00154	0.002
	Site	671468.34	4292324.87	0.075	0.0003	0.000	0.00164	0.002
BGAD	Airport	745577.14	4171560.32	0.075	0.0038	0.003	0.00464	0.008
	Site	751444.42	4159889.53	0.075	0.0042	0.002	0.00038	0.002
PARA	Airport	502953.69	4125282.28	0.075	0.0012	0.001	0.00000	0.001
	Site	502853.69	4125182.28	0.075	0.0013	0.001	0.00000	0.001

Page 59 of 59
2011 Lead Waiver Request
Page 59 of 59

Appendix F
 Kentucky SO_{2} PWEI Values

On June 22, 2010, the EPA released a new SO_{2} Final Rule and a new set of monitoring requirements. The new monitoring requirements use a Population Weighted Emissions Index (PWEI) that is calculated for each Core Based Statistical Area (CBSA). The PWEI is calculated by multiplying the population of each CBSA and the total amount of SO_{2}, in tons per year, that is emitted within the CBSA, based upon aggregated county level emissions data from the National Emissions Inventory (NEI). The result is then divided by one million to provide the PWEI value, which is expressed in a unit of million persons-tons per year.

The final rule requires:

- 3 monitors in CBSAs with index values of $1,000,000$ or more;
- 2 monitors in CBSAs with index values less than 1,000,000 but greater than 100,000; and
- 1 monitor in CBSAs with index values greater than 5,000.

PWEI based monitors must be established in the 2011 Network Plan, which must be submitted to the EPA Regional Administrator no later than July 1, 2011. However, PWEI based monitors are not required to be operational until January 1, 2013.

Based upon Kentucky's calculated PWEI values, the following CBSAs require SO_{2} monitors:

Kentucky CBSAs	PWEI (million persons- tons per year)	Number of SO_{2} Monitors Required	Number of SO_{2} Monitors Present	Kentucky Site Name	Kentucky AQS ID
Cincinnati-Middletown, OH-KY-IN	253,862	2	$2 *$	Northern Kentucky University	$21-037-3002$
Louisville-Jefferson County, KY-IN	110,765	2	2	Firearms Training	$21-111-1041$
Evansville, IN-KY	41,320	1	1	Watson Lane	$21-111-0051$
Lexington-Fayette, KY	6,401	1	1	Lexington Primary	$21-067-0012$
Paducah, KY-IL	6,607	1	1	Jackson Purchase	$21-145-1024$

[^2]
APPENDIX G

West Jefferson County Air Toxics Monitoring Stations

Volatile Organic Compounds (Method TO-15)

AIRS ID	Established	Location	Purpose	Frequency of Sampling
21-111-1041	1999	4201 Algonquin Parkway	Maximum Impact	24-hrs every twelfth day
21-111-0054	1999	4211 Campground Road	Maximum Impact	24-hrs every twelfth day
21-111-0058	1999	Farnsley Middle School, 3400 Lees Lane	Neighborhood Exposure	24-hrs every twelfth day
21-111-0060	1999	Chickasaw Park	Neighborhood Exposure	24-hrs every twelfth day
21-111-0062	1999	Cane Run Elementary	Neighborhood Exposure	24-hrs every twelfth day
21-111-0067	2009	Cannons Lane	Neighborhood Exposure	24-hrs every twelfth day

APPENDIX H

PUBLIC COMMENT

KENTUCKY DIVISION FOR AIR QUALITY AMBIENT AIR MONITORING NETWORK Comments Received 6/24/2011

Energy and Environment Cabinet
Department for Environmental Protection
Division for Air Quality
(1) A public comment period on the KENTUCKY DIVISION FOR AIR QUALITY AMBIENT AIR MONITORING NETWORK PLAN 2011 was held from May 25, 2011, through June 24, 2011.
(2) The following individuals submitted comments during the public comment period:

Name

Mr. Dallas R. Armstrong

Summary of Comments

(1) Subject: South Central Nelson County Air Monitoring in Reference to Emissions from Distilleries
(a) Comment: Mr. Dallas R. Armstrong commented "[...]south central Nelson County Ky. needs specialized Toxic air monitors installed to consistently monitor for caustic vapour's and or gas'es along with toxic fugitive distilliutes vapours and or gases [sic]."
(b) Response: The Division acknowledges the comment. Due to limited resources, the Division does not intend on siting and operating an air toxics monitor in Nelson County at this time. The Division's ambient air monitoring network meets or exceeds all required minimum monitoring requirements, as established by 40 CFR Part 58.
(2) Subject: South Central Nelson County Air Monitoring in Reference to Emissions from Distilleries
(a) Comment: Mr. Dallas R. Armstrong commented "Toxic chemicals and poisionous distillates verified by Ky. E.P.A. that are in question.

All Known Nero Toxins
Cleanout Chemicals all are server caustics
Ammonium Hydroxide (Anhydrous ammonia in atmosphere)
Known suficaniant and asphxyiant respiatory irratant
Sulfuric Acid (Battery acid) (Hydrogene sulfide in atmosphere)
Known suficaniant and asphyxyiant respiatory irratent
Nitrogen dioxide
Known suficant and asphxyiant respiatory irratant
Sulfur dioxide
Known suficant and asphxyiant respiatory irratent
Sodium Hydroxide (Lye)
Known suficant asphyxyiant respiatory irratant

Poisonious distilliates	
Acetone	Known respiatory irratant
Acidaldahyde	Known carcenogene and respiatory irratent
Ethanol	Known respiatory irratant
Fussol Oil	Known to cause blindness

All of these have strict O.S.H.A. regulations but what if you were to release higher levels late at night or very Early mornings or weekends [sic]."
(b) Response: The Division does not have the authority to apply OSHA regulations or standards. As mentioned previously, the Division's ambient air monitoring network meets or exceeds all required minimum monitoring requirements, as established by 40 CFR Part 58.

All public comments are maintained at the Kentucky Division for Air Quality headquarters in Frankfort, Kentucky. These documents are available for review upon request.

This page intentionally left blank

KY DAQ MONITORING STATIONS BY REGIONAL OFFICE

AQS ID	SITE NAME	COUNTY	PAGE NUMBER
Region 1 - Hazard Regional Office			
21-193-0003	Hazard	Perry	98
21-195-0002	Pikeville Primary	Pike	100
Region 2 - Frankfort Regional Office (Bluegrass Area)			
21-067-0012	Lexington Primary, Newtown	Fayette	42
21-113-0001	Nicholasville	Jessamine	44
21-151-0003	Richmond	Madison	83
Region 3 - Florence Regional Office			
21-015-0003	East Bend	Boone	19
21-037-3002	NKU	Campbell	21
Region 4 - Owensboro Regional Office			
21-059-0005	Owensboro	Daviess	68
21-091-0012	Lewisport	Hancock	70
21-101-0014	Baskett, Fire Dept.	Henderson	30
Region 5 - Ashland Regional Office			
21-019-0017	FIVCO, Ashland Primary	Boyd	37
21-019-0016	Lockwood	Boyd	35
21-019-0002	21st \& Greenup, Ashland	Boyd	33
21-043-0500	Grayson Lake	Carter	88
21-089-0007	Worthington	Greenup	39
Region 7 - Frankfort Regional Office (North Central Area)			
21-029-0006	Shepherdsville	Bullitt	47
21-093-0006	Elizabethtown	Hardin	27
21-185-0004	Buckner	Oldham	49
Region 8 - Paducah Regional Office			
21-047-0006	Hopkinsville	Christian	24
21-139-0003	Smithland	Livingston	75
21-139-0004	Bloodworth Farm	Livingston	77
21-145-1004	Paducah Middle School	McCracken	79
21-145-1024	Jackson Purchase	McCracken	81
21-157-0018	Calvert City Elementary	Marshall	94
21-157-0014	TVA Substation	Marshall	90
21-157-0019	Lazy Daz RV Park	Marshall	96
21-157-0016	Atmos Energy	Marshall	92
Region 9 - Bowling Green Regional Office			
21-213-0004	Franklin, DOT Garage	Simpson	102
21-227-0009	TBD	Warren	16
Region 10 - London Regional Office			
21-013-0002	Middlesboro Airport	Bell	73
21-199-0003	Somerset Gas Warehouse	Pulaski	85
21-207-0001	Salem Elementary, Russell Springs	Russell	104

[^0]: (Rev.5/16/11)

[^1]: (Rev.5/16/11)

[^2]: * Monitoring requirement partially fulfilled via MOA

